精英家教网 > 高中数学 > 题目详情
19.函数y=1+$\frac{1}{x-2}$(-2≤x≤1)的最大值是$\frac{3}{4}$.

分析 由函数y=1+$\frac{1}{x-2}$在[-2,1]上递减,即可得到最大值.

解答 解:函数y=1+$\frac{1}{x-2}$在[-2,1]上递减,
即有x=-2时,函数y的最大值为1-$\frac{1}{4}$=$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.

点评 本题考查函数的单调性的运用:求最值,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.求函数y=$\frac{5-x}{2x+5}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)满足f(x+4)=x3+2,当f(x)=1时,x的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.比较(x-4)(x+3)与(x-6)(x+5)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=3×2|x-3|的图象关于直线x=3对称.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{x-{x}^{2},x≤5}\\{f(x-4),x>5}\end{array}\right.$,则f(6)等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义在R上的奇函数f(x)满足f(x+2)=-f(x),且在[-1,0]上是增函数,给出下面关于f(x)的判断:①f(x)的图象关于直线x=1的对称;②f(x)在[1,2]上是减函数;③f(2)=f(0).其中正确判断的序号为①②③(写出所有正确判断的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.判断下列函数的奇偶性:
(1)f(x)=x+1;  
(2)f(x)=x3+3x,x∈[-4,4);
(3)f(x)=|x-2|-|x+2|;
(4)f(x)=$\left\{\begin{array}{l}{\frac{1}{2}{x}^{2}+1,x>0}\\{-\frac{1}{2}{x}^{2}-1,x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知|$\overline{a}$|=3,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{c}$=$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{d}$=m$\overrightarrow{a}$-$\overrightarrow{b}$,当实数m为何值时.
(1)$\overrightarrow{c}$⊥$\overrightarrow{d}$
(2)$\overrightarrow{c}$∥$\overrightarrow{d}$.

查看答案和解析>>

同步练习册答案