精英家教网 > 高中数学 > 题目详情
9.求函数y=$\frac{5-x}{2x+5}$的值域.

分析 分离常数,可将原函数变成y=$-\frac{1}{2}+\frac{15}{2(2x+5)}$,从而根据$\frac{15}{2(2x+5)}≠0$便可得出y$≠-\frac{1}{2}$,这样便求出了该函数的值域.

解答 解:$y=\frac{5-x}{2x+5}=\frac{-\frac{1}{2}(2x+5)+\frac{15}{2}}{2x+5}$=$-\frac{1}{2}+\frac{15}{2(2x+5)}$;
$\frac{15}{2(2x+5)}≠0$;
∴$y≠-\frac{1}{2}$;
∴该函数的值域为:{y|y$≠-\frac{1}{2}$}.

点评 考查函数值域的概念,分离常数法求函数的值域,要熟悉反比例函数的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设S为实数集R的非空子集,若对任意x,y∈S,都有x+y∈S,xy∈S,则称S为闭集合,已知集合A={x|x=a+$\sqrt{2}$b,a、b∈N}.
(1)证明:集合A为闭集合;
(2)若集合B={x|x=$\sqrt{2}$x1,x1∈A},证明:B?A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简下列各式:
(1)$\sqrt{5+2\sqrt{6}}$+$\sqrt{7-4\sqrt{3}}$-$\sqrt{6-4\sqrt{2}}$;
(2)$\frac{1}{\root{3}{(2+\sqrt{5})^{3}}}$+$\frac{1}{(\root{3}{2-\sqrt{5}})^{3}}$;
(3)$\sqrt{4{x}^{2}-4x+1}$+2$\root{4}{(x-2)^{4}}$($\frac{1}{2}$≤x≤2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=$\frac{3\sqrt{2}}{2}$,则$\frac{1}{1-{a}^{\frac{1}{4}}}$+$\frac{1}{1+{a}^{\frac{1}{4}}}$+$\frac{2}{1+{a}^{\frac{1}{2}}}$+$\frac{4}{1+a}$=(  )
A.$\frac{32}{3}$B.-$\frac{8}{3}$C.$\frac{32}{3}$或-$\frac{8}{3}$D.-$\frac{32}{3}$或$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x+1)=x-1+$\sqrt{2x-3}$
(1)求f(x)
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x<2}\\{6-x,x≥2}\end{array}\right.$
(1)求f(-3),f(3);
(2)画出函数f(x)的图象,并写出单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,那么f(1)+f(2)+f($\frac{1}{2}$)+f(3)+f($\frac{1}{3}$)+f(4)+f($\frac{1}{4}$)+…+f(2013)+f($\frac{1}{2013}$)=$\frac{4025}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{x+1}$,x∈[1,2].
(1)判断并证明函数f(x)的单调性;
(2)求函数f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=1+$\frac{1}{x-2}$(-2≤x≤1)的最大值是$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案