精英家教网 > 高中数学 > 题目详情
12.复数$\frac{5i}{1+2i}$=(  )
A.2+iB.-2+iC.1-2iD.1+2i

分析 直接利用复数的表达式同乘分母的共轭复数,化简求解即可.

解答 解:复数$\frac{5i}{1+2i}$=$\frac{5i(1-2i)}{(1+2i)(1-2i)}$=i+2.
故选:A.

点评 本题考查复数的代数形式的乘除运算,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.不等式(3x+1)(2x-1)>0的解集是(  )
A.$\{x|x<-\frac{1}{3}或x>\frac{1}{2}\}$B.$\{x|-\frac{1}{3}<x<\frac{1}{2}\}$C.$\{x|x>\frac{1}{2}\}$D.$\{x|x>-\frac{1}{3}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某市有一个玉米种植基地.该基地的技术员通过种植实验发现,一种品质优良的玉米种子每粒发芽的概率都为0.95,现在该种植基地播种了10000粒这种玉米种子,对于没有发芽的种子,每粒需再播种1粒,补种的种子数记为X,则X的数学期望EX=500.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若f(x)=$\left\{\begin{array}{l}{x+2,x≤0}\\{-x+2,x>0}\end{array}\right.$,则f(f(4))=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义两个平面向量$\overrightarrow a$,$\overrightarrow b$的一种运算$\overrightarrow a?\overrightarrow b=|{\overrightarrow a}|•|{\overrightarrow b}|sinθ$,θ为向量$\overrightarrow a$,$\overrightarrow b$的夹角,对于这种运算,给定以下结论:①$\overrightarrow a?\overrightarrow b=\overrightarrow b?\overrightarrow a$;②$λ(\overrightarrow a?\overrightarrow b)=(λ\overrightarrow a)?\overrightarrow b$;③$(\overrightarrow a+\overrightarrow b)?\overrightarrow c=(\overrightarrow a?\overrightarrow c)+(\overrightarrow b?\overrightarrow c)$;④若$\overrightarrow a=({x_1},{y_1})$,$\overrightarrow b=({x_2},{y_2})$,则$\overrightarrow a?\overrightarrow b=|{{x_1}{y_2}-{x_2}{y_1}}|$,你认为恒成立的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=sinx-$\sqrt{3}$cosx的图象的一条对称轴方程是(  )
A.x=$\frac{π}{6}$B.x=$\frac{π}{3}$C.x=$\frac{2π}{3}$D.x=$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知角α的终边经过点P(-1,2),则tan(α+$\frac{π}{4}$)的值是(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数$f(x)=\left\{\begin{array}{l}sinπx,x≤1\\ f(x-1),x>1\end{array}\right.$,则$f({\frac{4}{3}})$的值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若不等式x2-ax-b<0的解集为是(2,3),
(1)求a,b的值
(2)求不等式bx2-ax-1>0的解集.

查看答案和解析>>

同步练习册答案