精英家教网 > 高中数学 > 题目详情
1.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P是以F1F2为直径的圆与双曲线在第一象限的一个交点,连接PF2并延长,与双曲线交于点Q,若|PF1|=|QF2|,则直线PF2的斜率为(  )
A.-2B.-3C.-1D.-$\frac{1}{2}$

分析 设直线PF2的倾斜角为α,则|PF1|=|QF2|=2csinα,|PF2|=-2ccosα,可得2a=2csinα+2ccosα,△F1F2Q中,由余弦定理,化简可得tanα,即可求出直线PF2的斜率.

解答 解:设直线PF2的倾斜角为α,则|PF1|=|QF2|=2csinα,|PF2|=-2ccosα,
∴2a=2csinα+2ccosα
△F1F2Q中,由余弦定理可得(2csinα+2csinα+2ccosα)2=4c2+(2csinα)2-2•2c•(2csinα)•cosα,
化简可得tanα=-3,
故选:B.

点评 本题考查直线与双曲线的位置关系,考查余弦定理,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=ax+lnx-$\frac{{x}^{2}}{x-lnx}$有三个不同的零点x1,x2,x3(其中x1<x2<x3),则(1-$\frac{ln{x}_{1}}{{x}_{1}}$)2(1-$\frac{ln{x}_{2}}{{x}_{2}}$)(1-$\frac{ln{x}_{3}}{{x}_{3}}$)的值为(  )
A.1-aB.a-1C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若z1=sin2θ+icosθ,z2=cosθ+i$\sqrt{3}$sinθ,当θ=$\frac{π}{6}+2kπ,k∈Z$时,z1=z2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.有10名三好学生名额,分配给高二级6个班(可以分到一个班),有多少种分配方案?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.正项数列a1,a2,…,am(m≥4,m∈N*)满足:a1,a2,a3,…,ak-1,ak(k<m,k∈N*)是公差为d的等差数列,a1,am,am-1,…,ak+1,ak是公比为2的等比数列.
(1)若a1=d=2,k=8,求数列a1,a2,…,am的所有项的和Sm
(2)若a1=d=2,m<2016,求m的最大值;
(3)是否存在正整数k,满足a1+a2+…+ak-1+ak=3(ak+1+ak+2+…+am-1+am)?若存在,求出k值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在(x2-$\frac{a}{x}$)5的二项展开式中,x的一次项系数是-10,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若动点M(x,y)始终满足关系式$\sqrt{{x}^{2}+(y+2)^{2}}$+$\sqrt{{x}^{2}+(y-2)^{2}}$=8,则动点N的轨迹方程为(  )
A.$\frac{x^2}{16}+\frac{y^2}{12}$=1B.$\frac{x^2}{12}+\frac{y^2}{16}$=1C.$\frac{x^2}{12}-\frac{y^2}{16}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=sin(2x-\frac{π}{6})$.
(I)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的单调递增区间;
(Ⅲ)当$x∈[{0,\frac{2π}{3}}]$时,求函数f(x)的最小值,并求出使y=f(x)取得最小值时相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知定义在R上的函数f(x),对任意的x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0.
(Ⅰ)求f(0)的值,判断f(x)的奇偶性并说明理由;
(Ⅱ)求证:f(x)在(-∞,+∞)上是增函数;
(Ⅲ)若不等式f(k•2x)+f(2x-4x-2)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案