精英家教网 > 高中数学 > 题目详情

【题目】为常数,函数.给出以下结论:

①若,则在区间上有唯一零点;

②若,则存在实数,当时,

③若,则当时,.

其中正确结论的个数是( )

A. 0 B. 1 C. 2 D. 3

【答案】D

【解析】

由题意可得fx)过原点,求得fx)的导数,可得单调性、极值和最值,即可判断;结合最小值小于0,以及x的变化可判断②③.

函数fx)=exxa)+a,可得f(0)=0,fx)恒过原点,

,若a>1,由fx)的导数为f′(x)=exxa+1),

即有xa﹣1时,fx)递增;xa﹣1时,fx)递减,

可得xa﹣1处取得最小值,且fa﹣1)=aea﹣1

exx+1,可得aea﹣1<0,又f(a)=a>0

fx)在区间(a﹣1,a)上有唯一零点,故正确;

,若0<a<1,由可得fx)的最小值为fa﹣1)<0,

x→+∞时,fx)→+∞,可得存在实数x0,当xx0时,fx)>0,故正确;

,若a<0,由可得fx)的最小值为fa﹣1)<0,且x→﹣∞时,fx)→﹣∞,

x<0时,fx)<0,故正确.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)求的单调区间;

(2)若对于任意,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点

)若 是正方形一条边上的两个顶点,求这个正方形过顶点的两条边所在直线的方程

)若 是正方形一条对角线上的两个顶点,求这个正方形另外一条对角线所在直线的方程及其端点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

1)当n123时,分别比较f(n)g(n)的大小(直接给出结论);

2)由(1)猜想f(n)g(n)的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在函数)的所有切线中,有且仅有一条切线与直线垂直.

(1)求的值和切线的方程;

(2)设曲线在任一点处的切线倾斜角为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数,函数

(1)讨论函数在区间上的单调性;

(2)若存在两个极值点,且,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某观光海域AB段的长度为3百公里,一超级快艇在AB段航行,经过多次试验得到其每小时航行费用Q(单位:万元)与速度v(单位:百公里/小时)(0≤v≤3)的以下数据:

0

1

2

3

0

0.7

1.6

3.3

为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Qav3bv2cvQ=0.5vaQklogavb

(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;

(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,其前n项和为Sn , {bn}是等比数列,且a1=b1=2,a4+b4=27,S4﹣b4=10.

(1)求数列{an}与{bn}的通项公式;

(2)记Tn=anb1+an1b2+…+a1bn , n∈N* , 证明:Tn+12=﹣2an+10bn(n∈N*).

查看答案和解析>>

同步练习册答案