精英家教网 > 高中数学 > 题目详情
如图,在矩形ABCD中,沿对角线BD把ABCD折起,使C移到C′,且BC′⊥AC′.
(1)求证:平面ACD⊥平面ABC′;
(2)若AB=2,BC=1,求三棱锥C′-ABD的体积.
考点:棱柱、棱锥、棱台的体积,平面与平面垂直的判定
专题:空间位置关系与距离
分析:(1)由已知得BC′⊥平面AC′D,AD⊥BC′,从而AD⊥平面ABC′,由此能证明平面ACD⊥平面ABC′.
(2)由VC-ABD=VB-ACD,利用等积法能求出棱锥C′-ABD的体积.
解答: (1)证明:∵BC′⊥C′D,BC′⊥AC′,且C′D∩AC′=C′,
∴BC′⊥平面AC′D
∵AD?平面AC′D,∴AD⊥BC′,
∵矩形ABCD中,AD⊥AB,
又AB∩BC′=B,∴AD⊥平面ABC′,
∵AD?平面ACD,∴平面ACD⊥平面ABC′.
(2)解:∵AB=2,BC=1,
∴BC'=BC=1,DC=AC'=
3

∴AD2+AC'2=DC'2,AC'⊥C'D
∴sin∠ADC′=
3
2

S△ADC=
2×1×sin∠ADC
2
=
3
2

∴三棱锥C′-ABD的体积:
VC-ABD=VB-ACD=
1
3
×S△ADC×BC
=
3
6
点评:本题考查平面与平面垂直的证明,考查三棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于x的不等式ax+b>0的解集不可能是(  )
A、R
B、φ
C、{x|x>-
b
a
}
D、{x|x≠
b
a
}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x2+y2=2,求函数v=x2+2
3
xy-y2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=a-bcos3x的最大值为
3
2
,最小值为-
1
2
,求函数f(x)=3-absin
x
2
的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱锥V-ABC中,VO⊥平面ABC,O∈CD,AB=4,AD=BD,VA=VB=
13
,BC=
29
,VC=4.
(1)求证:CD⊥AB;
(2)求证:VC⊥平面ABV.
(3)求VV-ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

写出与下列角终边相同的角的集合,并指出它是第几象限角:
(1)-
53
3
π,(2)-21.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线4x+3y-35=0与圆心在原点的圆C相切,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:ρ=
3
3
8sin2θ+1
,直线l:ρ(cosθ-
3
sinθ)=12.
(1)求直线l和曲线C的直角坐标方程;
(2)设点P在曲线C上,求到直线l的距离最小的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-a|.
(1)若a=1时,解不等式f(x)+f(x-1)≤4;
(2)若不等式f(x)-x>3-2a2对x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案