精英家教网 > 高中数学 > 题目详情
14.正四面体侧面与底面所成二面角的余值$\frac{1}{3}$.

分析 不妨设正四面体为A-BCD,取CD的中点E,连接AE,BE,设四面体的棱长为2,则AE=BE=$\sqrt{3}$,且AE⊥CD,BE⊥CD,则∠AEB即为侧面与底面所成二面角的平面角.在△ABE中,利用余弦定理求解

解答 解:不妨设正四面体为A-BCD,取CD的中点E,连接AE,BE,设四面体的棱长为2,则AE=BE=$\sqrt{3}$,
且AE⊥CD,BE⊥CD,则∠AEB即为侧面与底面所成二面角的平面角.
   在△ABE中,cos∠AEB=$\frac{A{E}^{2}+B{E}^{2}-A{B}^{2}}{2AE•BE}=\frac{1}{3}$,
∴正四面体侧面与底面所成二面角的余弦值是$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查的知识点是二面角的平面角及求法,其中确定∠AEB即为相邻两侧面所成二面角的平面角,是解答本题的关键.属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设a=$\frac{\sqrt{2}}{2}$(sin 17°+cos 17°),b=2cos213°-1,c=sin 37°•sin 67°+sin 53°sin 23°,则(  )
A.a<b<cB.b<c<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若5把钥匙中只有两把能打开某锁,则从中任取一把钥匙能将该锁打开的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=4tanxsin(\frac{π}{2}-x)cos(x-\frac{π}{3})-\sqrt{3}$;
(1)求f(x)的定义域与最小正周期;
(2)求f(x)在区间$[-\frac{π}{4},\frac{π}{4}]$上的单调性与最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,内角A,B,C的对边分别为a,b,c.已知$({\sqrt{3}sinB-cosB})({\sqrt{3}sinC-cosC})$=4cosBcosC.
(1)求角A的大小;
(2)若a=2,求△ABC面积的取值范围;
(3)若sinB=psinC,试确定实数p的取值范围,使△ABC是锐角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知角θ的终边在射线y=2x(x≤0)上,则sinθ+cosθ=-$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.$\vec a=(-1,3),\vec b=(3,4)$,则$\vec a$在$\vec b$方向上的投影为$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.P(1,1)为椭圆$\frac{x2}{4}$+$\frac{y2}{2}$=1内一定点,经过P引一弦,使此弦在P点被平分,求此弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图程序框图中,若输入互不相等的三个正实数a,b,c,要求判断△ABC的形状,则空白的判断框中应填入(  )
A.a2+b2>c2B.a2+c2>b2C.b2+c2>a2D.b2+a2=c2

查看答案和解析>>

同步练习册答案