精英家教网 > 高中数学 > 题目详情
9.在△ABC中,内角A,B,C的对边分别为a,b,c.已知$({\sqrt{3}sinB-cosB})({\sqrt{3}sinC-cosC})$=4cosBcosC.
(1)求角A的大小;
(2)若a=2,求△ABC面积的取值范围;
(3)若sinB=psinC,试确定实数p的取值范围,使△ABC是锐角三角形.

分析 (1 )由已知及三角函数中的恒等变换应用,从而可求tanA=$\sqrt{3}$,即可解得A的值,
(2)由余弦定理和基本不等式可得bc≤4,再根据三角形的面积公式计算即可,
(3)由题意可得p=$\frac{\sqrt{3}}{2tanC}$+$\frac{1}{2}$,根据角C的范围,即可求出.

解答 解:(1)∵$({\sqrt{3}sinB-cosB})({\sqrt{3}sinC-cosC})$=4cosBcosC,
∴3sinBsinC+cosBcosC-$\sqrt{3}$sinBcosC-$\sqrt{3}$cosBsinC,
∴-$\sqrt{3}$sin(B+C)=3cos(B+C),
∴tan(B+C)=-$\sqrt{3}$,
∴tanA=$\sqrt{3}$,
∴A=$\frac{π}{3}$,
(2)由余弦定理可得a2=b2+c2-2bccosA,
∴4=b2+c2-bc≥2bc-bc=bc,当且仅当b=c时取等号,
∴S△ABC=$\frac{1}{2}$bcsinA≤$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∴△ABC面积的取值范围为(0,$\sqrt{3}$],
(3)sinB=psinC,
∴p=$\frac{sinB}{sinC}$=$\frac{sin(120°-C)}{sinC}$=$\frac{\sqrt{3}}{2tanC}$+$\frac{1}{2}$,
∵△ABC为锐角三角形,A=$\frac{π}{3}$,
∴$\frac{π}{6}$<C<$\frac{π}{2}$,
∴tanC>$\frac{\sqrt{3}}{3}$,
∴$\frac{1}{2}$<p<2,
即p的范围为$({\frac{1}{2},2})$

点评 本题主要考查了三角函数中的恒等变换应用,考查了正弦定理余弦定理和三角形的面积公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列关于K2的说法正确的是(  )
A.K2在任何相互独立问题中都可以用来检验有关还是无关
B.K2的值越大,两个事件的相关性越大
C.K2是用来判断两个分类变量是否有关系的随机变量,只对于两个分类变量适合
D.K2的观测值的计算公式为K2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在等比数列{an}中,已知a2a5=-32,a3+a4=4,且公比为整数,则a9=-256.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x),g(x)满足关系$g(x)=f(x)•f({x+\frac{π}{2}})$,
(1)设f(x)=cosx+sinx,求g(x)的解析式;
(2)当f(x)=|sinx|+cosx时,存在x1,x2∈R,对任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1-x2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知复数$\frac{2+ai}{2-i}$为纯虚数(i是虚数单位),则实数a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.正四面体侧面与底面所成二面角的余值$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.a,b是正实数,且a+b=4,则有(  )
A.$\frac{1}{ab}$≥$\frac{1}{2}$B.$\frac{1}{a}$+$\frac{1}{b}$≥1C.$\sqrt{ab}$≥2D.$\frac{1}{{a}^{2}+{b}^{2}}$≥$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知甲、乙两组数据的茎叶图如图所示,若它们的中位数相同,则甲组数据的平均数为32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知三棱锥A-BCD四个顶点都在半径为3的球面上,且BC过球心,当三棱锥A-BCD的体积最大时,则三棱锥A-BCD的表面积为(  )
A.$18+6\sqrt{3}$B.$18+8\sqrt{3}$C.$18+9\sqrt{3}$D.$18+10\sqrt{3}$

查看答案和解析>>

同步练习册答案