分析 (1)由a1-1,a2+1,a3-1成等差数列,可得2(a2+1)=a3-1+a1-1,利用a1=3,an+1=ban+1,可得a2,a3,代入解出即可得出.
(2)an+1=2an+1,变形为:an+1+1=2(an+1),利用等比数列的通项公式即可得出.
解答 解:(1)∵a1-1,a2+1,a3-1成等差数列,
∴2(a2+1)=a3-1+a1-1,
∵a1=3,an+1=ban+1,
∴a2=3b+1,a3=(3b+1)b+1,
∴2(3b+1+1)=(3b+1)b+1-1+3-1,
解得b=2或-$\frac{1}{3}$(舍去).
∴b=2.
(2)an+1=2an+1,
变形为:an+1+1=2(an+1),
∴数列{an+1}是等比数列,公比为2,首项为4.
∴an+1=4×2n-1,
∴an=2n+1-1,
∴数列{an}的前n项和Sn=$\frac{4({2}^{n}-1)}{2-1}$-n
=2n+2-4-n.
点评 本题考查了等比数列的通项公式及其前n项和公式、递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | -$\frac{\sqrt{3}}{3}$ | C. | $±\frac{\sqrt{3}}{3}$ | D. | $±\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①④ | B. | ②④⑤ | C. | ②③⑤ | D. | ①②③④⑤ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{5}}{5}$ | B. | $\frac{2\sqrt{5}}{5}$ | C. | -$\frac{2\sqrt{5}}{5}$ | D. | ±$\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com