精英家教网 > 高中数学 > 题目详情
已知f(x)=
1+lnx
x-1
,g(x)=
k
x
(k∈N*),对任意的c>1,存在实数a,b满足0<a<b<c,使得f(c)=f(a)=g(b),则k的最大值为(  )
A、2B、3C、4D、5
考点:函数的值
专题:函数的性质及应用
分析:根据题意转化为:
1+lnx
x-1
k
x
,对于x>1恒成立,构造函数h(x)=x•
1+lnx
x-1
求导数判断,h′(x)=
x-2-lnx
(x-1)2
,且y=x-2-lnx,y′=1-
1
x
>0在x>1成立,y=x-2-lnx在x>1单调递增,利用零点判断方法得出存在x0∈(3,4)使得f(x)≥f(x0)>3,即可选择答案.
解答: 解:∵f(x)=
1+lnx
x-1
,g(x)=
k
x
(k∈N*),
对任意的c>1,存在实数a,b满足0<a<b<c,使得f(c)=f(a)=g(b),
∴可得:
1+lnx
x-1
k
x
,对于x>1恒成立.
设h(x)=x•
1+lnx
x-1
,h′(x)=
x-2-lnx
(x-1)2
,且y=x-2-lnx,y′=1-
1
x
>0在x>1成立,
∴即3-2-ln3<0,4-2-ln4>0,
故存在x0∈(3,4)使得f(x)≥f(x0)>3,
∴k的最大值为3.
故选;B
点评:本题考查了学生的构造函数,求导数,解决函数零点问题,综合性较强,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

①设函数f(x)=|x+1|-|x-4|,解不等式f(x)<2;
②已知x,y,z∈R,且x+y+z=3,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

讨论函数f(x)=
1
2
ax2+x-(a+1)lnx在a∈R时的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

国家环保总局对长期超标准排放污物,污染严重而又未进行治理的单位,规定出一定期限,强令在此期限内完成排污治理.如图是国家环保总局在规定的排污达标日期前,对甲、乙两家企业连续检测的结果(W表示排污量),哪个企业治理的效率比较高?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2,|
b
|=1,
a
b
的夹角为
π
3

(1)求|
a
+
b
|;
(2)求向量
m
=2
a
+
b
与向量
n
=
a
-4
b
的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:x2-x≥2,q:|x-2|≤1,且“p∧q”与“¬q”同时为假命题,则实数x的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求过直线2x+y+4=0和圆(x+1)2+(y-2)2=4的交点,并且面积最小的圆的方程.(圆系法)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=xln(ax)(a>0)
(Ⅰ)设F(x)=
1
2
f(1)x 
2+f'(x),讨论函数F(x)的单调性;
(Ⅱ)过两点A(x1,f′(x1)),B(x2f′(x2))(x1<x2)的直线的斜率为k,求证:
1
x2
<k<
1
x1

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,假命题为(  )
A、存在四边相等的四边形不是正方形
B、z1,z2∈C,z1+z2为实数的充分必要条件是z1,z2为共轭复数
C、若x,y∈R,且x+y>2则x,y至少有一个大于1
D、命题:?n∈N,2n>1000的否定是:?n∈N,2n≤1000

查看答案和解析>>

同步练习册答案