精英家教网 > 高中数学 > 题目详情
2.如果cosα•sinα>0,且sinα•tanα>0.化简:sin$\frac{α}{2}$•$\sqrt{\frac{{1-cos\frac{α}{2}}}{{1+cos\frac{α}{2}}}}$+sin$\frac{α}{2}$•$\sqrt{\frac{{1+cos\frac{α}{2}}}{{1-cos\frac{α}{2}}}}$.

分析 利用已知条件判断正弦函数符号,判断角所在象限,化简所求的表达式,代入求解即可.

解答 解:$由sinα•tanα>0得:\frac{{{{sin}^2}α}}{cosα}>0⇒cosα>0$,
又cosα•sinα>0⇒sinα>0,
∴$2kπ<α<2kπ+\frac{π}{2}$,∴$kπ<\frac{α}{2}<kπ+\frac{π}{4}$…(2分)
∴$k为偶数时,\frac{α}{2}位于第一象限$;
$k为奇数时,\frac{α}{2}位于第三象限$;…(3分).
∴$原式=sin\frac{α}{2}•\sqrt{\frac{{1-{{cos}^2}\frac{α}{2}}}{{{{(1+cos\frac{α}{2})}^2}}}}+sin\frac{α}{2}•\sqrt{\frac{{1-{{cos}^2}\frac{α}{2}}}{{{{(1-cos\frac{α}{2})}^2}}}}$
=$sin\frac{α}{2}•\frac{{|sin\frac{α}{2}|}}{{1+cos\frac{α}{2}}}+sin\frac{α}{2}•\frac{{|sin\frac{α}{2}|}}{{1-cos\frac{α}{2}}}=\frac{{2|sin\frac{α}{2}|}}{{sin\frac{α}{2}}}$…(4分)
=$\left\{{\begin{array}{l}2&{(\frac{α}{2}在第一象限)}\\{-2}&{(\frac{α}{2}在第三象限)}\end{array}}\right.$…(6分)

点评 本题考查三角函数符号,诱导公式以及同角三角函数基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如果直线l1:ax+2y+6=0与直线l2:x+(a-1)y+3=0垂直,那么a等于(  )
A.2B.-1C.-1或2D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知过点A(-2,m)和B(m,4)的直线与直线y=2x+1平行,则m=(  )
A.0B.-8C.2D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不等式|x-2|<2的解集是(  )
A.(-1,1)B.(-2,2)C.(-1,0)∪(0,1)D.(0,4 )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|3-x|+|x+4|.
(1)解不等式f(x)≥9;
(2)设函数g(x)=a(x-4)+1,a∈R,若f(x)>g(x)对任意的x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如表:
是否需要志愿者
需要4030
不需要160270
由${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$算得,K2≈9.967
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
参照附表,得到的正确结论是(  )
A.有99%以上的把握认为“需要志愿者提供帮助与性别无关”
B.有99%以上的把握认为“需要志愿者提供帮助与性别有关”
C.在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.圆O1:x2+y2+6x=0与圆O2:x2+y2-8y=0的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.圆ρ=2$\sqrt{2}$(cosθ-sinθ)的圆心极坐标是(  )
A.$(\sqrt{2},\frac{3π}{4})$B.$({2,\frac{7π}{4}})$C.$(2,\frac{5π}{4})$D.$({2,\frac{3π}{4}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆O的圆心为(2,-1),且圆与直线3x+4y-7=0相切.求:
(1)求圆O的标准方程;
(2)圆心O关于直线2x-y+1=0的对称点O′为圆心,半径不变的圆的方程.

查看答案和解析>>

同步练习册答案