分析 利用共轭复数的意义可得z=$\frac{1}{cos2θ-isin2θ}$=cos2θ+isin2θ对应的点在第二象限,可得cos2θ<0,sin2θ>0,解出θ即可得出结论.
解答 解:z=$\frac{1}{cos2θ-isin2θ}$=$\frac{cos2θ+isin2θ}{(cos2θ-isin2θ)(cos2θ+isin2θ)}$=cos2θ+isin2θ对应的点在第二象限,
∴cos2θ<0,sin2θ>0,
∴$2kπ+\frac{π}{2}$<2θ<2kπ+π,k∈Z.
解得kπ+$\frac{π}{4}$<θ<kπ+$\frac{π}{2}$,k∈Z.
k=2n(n∈Z)时,2nπ+$\frac{π}{4}$<θ<2nπ+$\frac{π}{2}$,θ为第一象限角.
k=2n-1(n∈Z)时,2nπ-$\frac{3π}{4}$<θ<2nπ-$\frac{π}{2}$,θ为第三象限角.
综上可得:θ是第一、三象限的角.
故答案为:一、三.
点评 本题考查了复数的运算法则、几何意义、三角函数求值,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3-\sqrt{3}}{3}$ | B. | $\frac{3}{2}$ | C. | 1-$\sqrt{3}$ | D. | $\sqrt{3}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{10}{21}$ | B. | $\frac{20}{21}$ | C. | $\frac{10}{19}$ | D. | $\frac{20}{19}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com