精英家教网 > 高中数学 > 题目详情
19.如图,在矩形ABCD中,$AB=\sqrt{3},BC=1$,将△ACD沿折起,使得D折起的位置为D1,且D1在平面ABC的射影恰好落在AB上,在四面体D1ABC的四个面中,其中有n对平面相互垂直,则n等于(  )
A.2B.3C.4D.5

分析 设D1在平面ABC的射影为E,连接D1E,根据线面垂直的性质与判定,面面垂直的判定定理寻找互相垂直的平面.

解答 解:设D1在平面ABC的射影为E,连接D1E,则D1E⊥平面ABC,
∵D1E?平面ABD1,∴平面ABD1⊥平面ABC.
∵D1E⊥平面ABC,BC?平面ABC,
∴D1E⊥BC,又AB⊥BC,D1E∩AB=E,
∴BC⊥平面ABD1,又BC?平面BCD1
∴平面BCD1⊥平面ABD1
∵平面BC⊥平面ABD1,AD1?平面ABD1
∴BC⊥AD1,又CD1⊥AD1,BC∩CD1=C,
∴AD1⊥平面BCD1,又AD1?平面ACD1
∴平面ACD1⊥平面BCD1
∴共有3对平面互相垂直.
故选:B.

点评 本题考查了线面垂直的性质与判定,面面垂直的判定,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x2+mx-2m-1仅存在整数零点,则实数m的集合为{0,-8}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在等差数列{an}中,若a2+a4+a6+a8+a10=80,则${a}_{7}-\frac{1}{2}{a}_{8}$的值为(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L与高,计算其体积V的近似公式V≈$\frac{1}{48}$L2h,它实际上是将圆锥体积公式中的圆周率π近似取为4,那么近似公式V≈$\frac{1}{75}$L2h相当于将圆锥体积公式中π的近似取为(  )
A.$\frac{25}{6}$B.$\frac{25}{8}$C.$\frac{25}{3}$D.$\frac{25}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知x,y满足$\left\{\begin{array}{l}x≥2\\ x+y≤4\\ 2x-y-m≤0\end{array}\right.$,若目标函数z=3x+y的最大值为10,则m的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.i为虚数单位,z=$\frac{1}{cos2θ-isin2θ}$对应的点在第二象限,则θ是第一、三象限的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数$f(x)=ln({\sqrt{{x^2}+1}-x})$,若a,b满足不等式f(a2-2a)+f(2b-b2)≤0,则当1≤a≤4时,2a-b的最大值为(  )
A.1B.10C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.关于x的方程x2-x•cosA•cosB-cos2$\frac{C}{2}$=0有一个根为1,则△ABC一定是(  )
A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,正三棱锥P-ABC,已知AB=2,PA=3
(1)求此三棱锥体积
(2)若M是侧面PBC上一点,试在面PBC上过点M画一条与棱PA垂直的线段,并说明理由.

查看答案和解析>>

同步练习册答案