精英家教网 > 高中数学 > 题目详情
14.已知x,y满足$\left\{\begin{array}{l}x≥2\\ x+y≤4\\ 2x-y-m≤0\end{array}\right.$,若目标函数z=3x+y的最大值为10,则m的值为5.

分析 作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到m的值.然后即可得到结论.

解答 解:不等式组对应的平面区域如图:
由z=3x+y得y=-3x+z
平移直线y=-3x+z,则由图象可知当直线y=-3x+z经过点C时,直线y=-3x+z的截距最大,此时z最大,为3x+y=10
由$\left\{\begin{array}{l}{3x+y=10}\\{x+y=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,即C(3,1),
此时C在2x-y-m=0上,
则m=5.
故答案为:5.

点评 本题主要考查线性规划的应用,根据z的几何意义,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.{an}是首项为1,公差为3的等差数列,如果an=2 014,则序号n等于(  )
A.667B.668C.669D.672

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设a,b是两条不同的直线,α,β为两个不重合的平面,下列命题中的真命题的是(  )
A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥b
C.若a?α,b?β,α⊥β,则 a⊥bD.若a⊥α,b⊥β,α∥β,则a∥b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列函数的导数:
(1)$y=2{x^3}+\root{3}{x}+cosx-1$
(2)y=(x3+1)(2x2+8x-5)
(3)$y=\frac{{lnx+{2^x}}}{x^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.平面直角坐标系xoy中,椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,过椭圆右焦点F作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6.
(1)求椭圆的方程;
(2)A,B是抛物线C2:x2=4y上两点,且A,B处的切线相互垂直,直线AB与椭圆C1相交于C,D两点,求弦|CD|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,在矩形ABCD中,$AB=\sqrt{3},BC=1$,将△ACD沿折起,使得D折起的位置为D1,且D1在平面ABC的射影恰好落在AB上,在四面体D1ABC的四个面中,其中有n对平面相互垂直,则n等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)的导数f'(x),f(x)不是常数函数,且(x+1)f(x)+xf'(x)≥0,对x∈[0,+∞)恒成立,则下列不等式一定成立的是(  )
A.ef(1)<f(2)B.f(1)<0C.ef(e)<2f(2)D.f(1)<2ef(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在多面体ABCDEF中,四边形ABCD为正方形,AD=DE=2BF=2,ED⊥平面ABCD,FB∥ED.
(1)若$\overrightarrow{FG}=\frac{1}{2}(\overrightarrow{FA}+\overrightarrow{FE})$,求证:FG∥平面ABCD;
(2)求二面角B-EF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a,b,c为三条不重合的直线,α,β,γ为三个不重合的平面,给出四个命题:
①$\left.\begin{array}{l}{α∥c}\\{β∥c}\end{array}\right\}$⇒α∥β;②$\left.\begin{array}{l}{α∥γ}\\{β∥γ}\end{array}\right\}$⇒α∥β;③$\left.\begin{array}{l}{α∥c}\\{a∥c}\end{array}\right\}$⇒a∥α;④$\left.\begin{array}{l}{a∥γ}\\{β∥γ}\end{array}\right\}$⇒a∥β
其中正确的命题是(  )
A.①②③B.①④C.D.①③④

查看答案和解析>>

同步练习册答案