精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)的导数f'(x),f(x)不是常数函数,且(x+1)f(x)+xf'(x)≥0,对x∈[0,+∞)恒成立,则下列不等式一定成立的是(  )
A.ef(1)<f(2)B.f(1)<0C.ef(e)<2f(2)D.f(1)<2ef(2)

分析 根据条件构造函数F(x)=xexf (x),求出函数的导数,得到F′(x)=ex[(x+1)f(x)+xf′(x)]≥0对x∈[0,+∞)恒成立,得出函数F(x)=xexf (x)在[0,+∞)上单调递增,利用函数的单调性和导数之间的关系进行求解即可.

解答 解:构造函数F(x)=xexf (x),则F′(x)=ex[(x+1)f(x)+xf′(x)],
∵(x+1)f(x)+xf'(x)≥0,
∴F′(x)≥0对x∈[0,+∞)恒成立,
∴函数F(x)=xexf (x)在[0,+∞)上单调递增,
∴F(1)<F(2),
∴f(1)<2ef(2),
故选:D.

点评 本题主要考查函数值的大小,结合条件,构造函数,求函数的导数,利用函数的单调性和导数的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,则输出的结果为(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在区间[0,2π]内任取一个实数x,使得$cosx≥\frac{{\sqrt{2}}}{2}$的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知x,y满足$\left\{\begin{array}{l}x≥2\\ x+y≤4\\ 2x-y-m≤0\end{array}\right.$,若目标函数z=3x+y的最大值为10,则m的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=log${\;}_{\frac{1}{2}}$(x2-2x-3)的单调递减区间是(  )
A.(-∞,1)B.(-∞,-1)C.(3,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数$f(x)=ln({\sqrt{{x^2}+1}-x})$,若a,b满足不等式f(a2-2a)+f(2b-b2)≤0,则当1≤a≤4时,2a-b的最大值为(  )
A.1B.10C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率是$\frac{\sqrt{2}}{2}$,过E的右焦点且垂直于椭圆长轴的直线与椭圆交于A、B两点,|AB|=2
(Ⅰ)求椭圆方程;
(Ⅱ)过点P(0,$\sqrt{3}$)的动直线l与椭圆E交于的两点M,N(不是的椭圆顶点).求证:$\overrightarrow{OM}$•$\overrightarrow{ON}$-7$\overrightarrow{PM}$$•\overrightarrow{PN}$是定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个圆的圆心在抛物线y2=16x上,且该圆经过抛物线的顶点和焦点,若圆心在第一象限,则该圆的标准方程是(x-2)2+(y-4$\sqrt{2}$)2=36.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合A={m+1,-3},集合B={2m+1,m-3}.若A∩B={-3},则实数m的值为-2.

查看答案和解析>>

同步练习册答案