| A. | ef(1)<f(2) | B. | f(1)<0 | C. | ef(e)<2f(2) | D. | f(1)<2ef(2) |
分析 根据条件构造函数F(x)=xexf (x),求出函数的导数,得到F′(x)=ex[(x+1)f(x)+xf′(x)]≥0对x∈[0,+∞)恒成立,得出函数F(x)=xexf (x)在[0,+∞)上单调递增,利用函数的单调性和导数之间的关系进行求解即可.
解答 解:构造函数F(x)=xexf (x),则F′(x)=ex[(x+1)f(x)+xf′(x)],
∵(x+1)f(x)+xf'(x)≥0,
∴F′(x)≥0对x∈[0,+∞)恒成立,
∴函数F(x)=xexf (x)在[0,+∞)上单调递增,
∴F(1)<F(2),
∴f(1)<2ef(2),
故选:D.
点评 本题主要考查函数值的大小,结合条件,构造函数,求函数的导数,利用函数的单调性和导数的关系是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (-∞,-1) | C. | (3,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 10 | C. | 5 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com