精英家教网 > 高中数学 > 题目详情
12.如图程序框图的算法思路来源于我国古代数学名著《数学九章》中的“秦九韶算法”求多项式的值.执行程序框图,若输入a0=1,a1=1,a2=0,a3=-1,则输出的u的值为(  )
A.2B.1C.0D.-1

分析 模拟运行程序,即可得出结论.

解答 解:执行程序框图,u=-1,n=2;u=0,n=3;u=1,n=4,
∵n>3,∴输出u=1.
故选B.

点评 本题考查程序框图,考查学生的计算能力,正确模拟运行程序是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E为棱CC1上的动点.
(1)若E为棱CC1的中点,求证:A1E⊥平面BDE;
(2)试确定E点的位置使直线A1C与平面BDE所成角的正弦值是$\frac{{2\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.i为虚数单位,z=$\frac{1}{cos2θ-isin2θ}$对应的点在第二象限,则θ是第一、三象限的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在平面直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t+\sqrt{2}-1\end{array}\right.$(t是参数),以原点O为极点,Ox为极轴建立极坐标系,圆C的极坐标方程为p=$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(Ⅰ)求圆心C的直角坐标方程;
(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.关于x的方程x2-x•cosA•cosB-cos2$\frac{C}{2}$=0有一个根为1,则△ABC一定是(  )
A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在某化学反应的中间阶段,压力保持不变,温度从1℃变化到5℃,反应结果如表所示(x表示温度,y代表结果):
x12345
y3571011
(1)求化学反应的结果y对温度x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)判断变量x与y之间是正相关还是负相关,并预测当温度到达10℃时反应结果为多少?
附:线性回归方程中$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=2-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).在极坐标与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=4cosθ.
(Ⅰ) 求圆C的直角坐标方程;
(Ⅱ) 设圆C与直线l交于点A、B,若点P的坐标为(2,1),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)为区间(-∞,0)∪(0,+∞)上的奇函数,且(0,+∞)为增区间,若f(-1)=0,则当$\frac{f(x)}{x}$<0时,x的取值范围是(  )
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且$f(x)+g(x)={(\frac{1}{2})^x}$.
(1)求函数f(x)和g(x)的解析式;
(2)若存在${x_0}∈[{\frac{1}{2},1}]$,使得等式af(x0)+g(2x0)=0成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案