精英家教网 > 高中数学 > 题目详情
2.已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且$f(x)+g(x)={(\frac{1}{2})^x}$.
(1)求函数f(x)和g(x)的解析式;
(2)若存在${x_0}∈[{\frac{1}{2},1}]$,使得等式af(x0)+g(2x0)=0成立,求实数a的取值范围.

分析 (1)以-x代替x,建立方程,与已知方程联立,即可求函数f(x)和g(x)的解析式;
(2)由题,即存在${x_0}∈[\frac{1}{2},1]$,$a=-\frac{{g(2{x_0})}}{{f({x_0})}}$,构造函数,确定其范围,即可求实数a的取值范围.

解答 解:(1)由$f(x)+g(x)={(\frac{1}{2})^x}$得$f(-x)+g(-x)={(\frac{1}{2})^{-x}}$,即$-f(x)+g(x)={(\frac{1}{2})^{-x}}$,
所以$f(x)=\frac{1}{2}({2^{-x}}-{2^x})$,$g(x)=\frac{1}{2}({2^{-x}}+{2^x})$.
(2)由题,即存在${x_0}∈[\frac{1}{2},1]$,$a=-\frac{{g(2{x_0})}}{{f({x_0})}}$,
设$h(x)=-\frac{g(2x)}{f(x)}$,则h(x)=$-\frac{{\frac{1}{2}({2^{-2x}}+{2^{2x}})}}{{\frac{1}{2}({2^{-x}}-{2^x})}}$=$\frac{{{2^{2x}}+{2^{-2x}}}}{{{2^x}-{2^{-x}}}}$=$({2^x}-{2^{-x}})+\frac{2}{{{2^x}-{2^{-x}}}}$,
$x∈[\frac{1}{2},1]$时,${2^x}-{2^{-x}}∈[\frac{{\sqrt{2}}}{2},\frac{3}{2}]$,
设t=2x-2-x,则$t∈[\frac{{\sqrt{2}}}{2},\frac{3}{2}]$,而$h(x)=t+\frac{2}{t}$,$y=t+\frac{2}{t}$在$[\frac{{\sqrt{2}}}{2},\sqrt{2}]$是递减,在$[\sqrt{2},\frac{3}{2}]$上递增,
因此${y_{最小}}=\sqrt{2}+\frac{2}{{\sqrt{2}}}=2\sqrt{2}$,${y_{最大}}=\frac{{\sqrt{2}}}{2}+\frac{2}{{\frac{{\sqrt{2}}}{2}}}=\frac{{5\sqrt{2}}}{2}$,
所以$h(x)∈[2\sqrt{2},\frac{{5\sqrt{2}}}{2}]$,即$a∈[2\sqrt{2},\frac{{5\sqrt{2}}}{2}]$.

点评 本题考查函数的奇偶性,考查函数的最值,正确构造函数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图程序框图的算法思路来源于我国古代数学名著《数学九章》中的“秦九韶算法”求多项式的值.执行程序框图,若输入a0=1,a1=1,a2=0,a3=-1,则输出的u的值为(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设集合A={x|y=2x+3},B={(x,y)|y=4x+1},则A∩B=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x0是函数f(x)=lnx-6+2x的零点,则下列四个数中最小的是(  )
A.lnx0B.$ln\sqrt{x_0}$C.ln(lnx0D.${(ln{x_0})^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.将不超过30的正整数分成A、B、C三个集合,分别表示可被3整除的数、被3除余1的数、被3除余2的数.请分别用两种方法表示集合A、B、C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.4cos15°cos75°-sin15°sin75°=(  )
A.0B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.与函数y=x-1-(x-2)0表示同一个函数的是(  )
A.y=x-2B.$y=\frac{{{x^2}-4}}{x+2}$C.$y=\frac{{{{({x-2})}^2}}}{x-2}$D.$y={({\frac{x-2}{{\sqrt{x-2}}}})^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线l与双曲线C:x2-y2=2的两条渐近线分别交于A,B两点,若AB的中点在该双曲线上,O为坐标原点,则△AOB的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题中,真命题的个数有(  )
①?x∈R,x2-x+$\frac{1}{4}$≥0;
②?x>0,lnx+$\frac{1}{lnx}$≤2;
③“a>b”是“ac2>bc2”的充要条件;
④f(x)=3x-3-x是奇函数.
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案