4£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®ÔÚ¼«×ø±êÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=4cos¦È£®
£¨¢ñ£© ÇóÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£© ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA¡¢B£¬ÈôµãPµÄ×ø±êΪ£¨2£¬1£©£¬Çó|PA|+|PB|£®

·ÖÎö £¨1£©ÀûÓÃx=¦Ñcos¦È£¬¦Ñ2=x2+y2£¬½«ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=4cos¦È£¬Á½±ßͬ³Ë¦Ñ£¬»¯³ÉÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÀûÓòÎÊýµÄ¼¸ºÎÒâÒ壬¼´¿ÉÇó|PA|+|PB|£®

½â´ð ½â£º£¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=4cos¦È£¬ËùÒÔ¦Ñ2=4¦Ñcos¦È£¬ËüµÄÖ±½Ç×ø±ê·½³ÌÊÇ£ºx2+y2=4x£¬¼´£¨x-2£©2+y2=4¡­£®£¨3·Ö£©
£¨2£©ÉèµãA¡¢B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬½«$\left\{\begin{array}{l}{x=2-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬´úÈ루x-2£©2+y2=4ÕûÀíµÃ${t^2}+\sqrt{2}t-3=0$£¬Ôò$\left\{{\begin{array}{l}{{t_1}+{t_2}=-\sqrt{2}}\\{{t_{1•}}{t_2}=-3}\end{array}}\right.$£¬¡­..£¨5·Ö£©
ÓÖ|PA|+|PB|=$|{t_1}|+|{t_2}|=|{{t_1}-{t_2}}|={£¨{t_1}+{t_2}£©^2}-4{t_1}t{\;}_2=\sqrt{14}$¡­..£¨10·Ö£©

µãÆÀ ±¾Ì⿼²é¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²é²ÎÊýÒâÒåµÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Éèf£¨x£©=$\left\{\begin{array}{l}{1-\sqrt{x}£¬x¡Ý0}\\{{2}^{x}£¬x£¼0}\end{array}\right.$£¬Ôòf£¨f£¨-log23£©£©=£¨¡¡¡¡£©
A£®$\frac{3-\sqrt{3}}{3}$B£®$\frac{3}{2}$C£®1-$\sqrt{3}$D£®$\sqrt{3}$-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÉèбÂÊΪk£¨k£¾0£©µÄÖ±ÏßlÓëÍÖÔ²C£º$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{3}$=1½»ÓÚA¡¢BÁ½µã£¬ÇÒOA¡ÍOB£®
£¨¢ñ£©ÇóÖ±ÏßlÔÚyÖáÉϵĽؾࣨÓÃk±íʾ£©£»
£¨¢ò£©Çó¡÷AOBÃæ»ýÈ¡×î´óֵʱֱÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ³ÌÐò¿òͼµÄË㷨˼·À´Ô´ÓÚÎÒ¹ú¹Å´úÊýѧÃûÖø¡¶Êýѧ¾ÅÕ¡·Öеġ°ÇؾÅÉØËã·¨¡±Çó¶àÏîʽµÄÖµ£®Ö´ÐгÌÐò¿òͼ£¬ÈôÊäÈëa0=1£¬a1=1£¬a2=0£¬a3=-1£¬ÔòÊä³öµÄuµÄֵΪ£¨¡¡¡¡£©
A£®2B£®1C£®0D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®£¨±¾Ð¡ÌâÂú·Ö10·Ö£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏß$C£º\left\{\begin{array}{l}x=\sqrt{3}cos¦Á\\ y=sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬Ö±Ïßl£ºx-y-6=0£®
£¨1£©ÔÚÇúÏßCÉÏÇóÒ»µãP£¬Ê¹µãPµ½Ö±ÏßlµÄ¾àÀë×î´ó£¬²¢Çó³ö´Ë×î´óÖµ£»
£¨2£©¹ýµãM£¨-1£¬0£©ÇÒÓëÖ±ÏßlƽÐеÄÖ±Ïßl1½»CÓÚµãA£¬BÁ½µã£¬ÇóµãMµ½A£¬BÁ½µãµÄ¾àÀëÖ®»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔÚ¿Õ¼äÖУ¬ÏÂÁÐÃüÌâ´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®¹ýÖ±ÏßÍâÒ»µãÓÐÇÒÖ»ÓÐÒ»ÌõÖ±ÏßÓëÒÑÖªÖ±Ï߯½ÐÐ
B£®²»¹«ÏßµÄÈý¸öµãÈ·¶¨Ò»¸öÆ½Ãæ
C£®Èç¹ûÁ½ÌõÖ±Ïß´¹Ö±ÓÚͬһÌõÖ±Ïߣ¬ÄÇôÕâÁ½ÌõÖ±Ï߯½ÐÐ
D£®Èç¹ûÁ½¸öÆ½Ãæ´¹Ö±ÓÚͬһ¸öÆ½Ãæ£¬ÄÇôÕâÁ½¸öÆ½Ãæ¿ÉÄÜ»¥Ïà´¹Ö±

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=$\frac{{¦Ë•{2^x}+£¨¦Ë-2£©}}{{{2^x}+1}}$£®
£¨1£©ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹f£¨x£©ÎªÆæº¯Êý£®
£¨2£©ÅжϺ¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£¬²¢Óõ¥µ÷ÐÔ¶¨ÒåÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®É輯ºÏA={x|y=2x+3}£¬B={£¨x£¬y£©|y=4x+1}£¬ÔòA¡ÉB=∅£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Ó뺯Êýy=x-1-£¨x-2£©0±íʾͬһ¸öº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®y=x-2B£®$y=\frac{{{x^2}-4}}{x+2}$C£®$y=\frac{{{{£¨{x-2}£©}^2}}}{x-2}$D£®$y={£¨{\frac{x-2}{{\sqrt{x-2}}}}£©^2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸