分析 (Ⅰ)设l:y=kx+t,A(x1,y1),B(x2,y2),由OA⊥OB,得(1+k2)x1x2+kt(x1+x2)+t2=0,联立$\left\{\begin{array}{l}{y=kx+t}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得x2+3(kx+t)2=9,即(1+3k2)x2+6ktx+3t2-9=0,由此利用韦达定理、根的判别式,结合已知条件能求出直线l在y轴上的截距.
(Ⅱ)设△AOB的面积为S,O到直线l的距离为d,则S=$\frac{1}{2}$|AB|•d,由此利用点到直线的距离公式和弦长公式能求出△AOB面积取最大值时直线l的方程.
解答 解:(Ⅰ)设l:y=kx+t,A(x1,y1),B(x2,y2),
∵斜率为k(k>0)的直线l与椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{3}$=1交于A、B两点,且OA⊥OB,
∴∠AOB=90°,∴$\overrightarrow{OA}•\overrightarrow{OB}=0$,
∴x1x2+(kx1+t)(kx2+t)=0,∴(1+k2)x1x2+kt(x1+x2)+t2=0,(*)
联立$\left\{\begin{array}{l}{y=kx+t}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,消去y,得x2+3(kx+t)2=9,即(1+3k2)x2+6ktx+3t2-9=0,
则${x}_{1}+{x}_{2}=-\frac{6kt}{1+3{k}^{2}}$,x1x2=$\frac{3{t}^{2}-9}{1+3{k}^{2}}$,且△>0,代入(*)
从而得(1+k2)(3t2-9)-6k2t2+t2(1+3k2)=0,∴3t2-9-9k2+t2=0,
∴${t}^{2}=\frac{9}{4}(1+{k}^{2})$,∴t=±$\frac{3}{2}\sqrt{1+{k}^{2}}$,
∴直线l在y轴上的截距为$\frac{3}{2}\sqrt{1+{k}^{2}}$或-$\frac{3}{2}\sqrt{1+{k}^{2}}$.
(Ⅱ)设△AOB的面积为S,O到直线l的距离为d,则S=$\frac{1}{2}$|AB|•d,
而由(1)知d=$\frac{|t|}{\sqrt{{k}^{2}+1}}=\frac{3}{2}$,且|AB|=$\sqrt{{k}^{2}+1}•\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{1+{k}^{2}}×\sqrt{\frac{36{k}^{2}{t}^{2}}{(1+3{k}^{2})^{2}}-\frac{4(3{t}^{2}-9)}{1+3{k}^{2}}}$=$\frac{\sqrt{{k}^{2}+1}}{1+3{k}^{2}}×3\sqrt{1+9{k}^{2}}$=$\frac{3\sqrt{({k}^{2}+1)(1+9{k}^{2})}}{1+3{k}^{2}}$,
∴$S=\frac{9}{4}×\sqrt{1+\frac{4}{(9{k}^{2}+\frac{1}{{k}^{2}})+6}}$≤$\frac{9}{4}×\sqrt{1+\frac{1}{3}}=\frac{3\sqrt{3}}{2}$,
当${S}_{max}=\frac{3}{2}\sqrt{3}$时,$9{k}^{2}=\frac{1}{{k}^{2}}$,解得k=$\frac{\sqrt{3}}{3}$,∴t=$±\sqrt{3}$,
∴所求直线方程为y=$\frac{\sqrt{3}}{3}x+\sqrt{3}$或y=$\frac{\sqrt{3}}{3}x-\sqrt{3}$.
点评 本题考查直线在y轴上的截距的求法,考查直线方程的求法,是中档题,解题时要认真审题,注意韦达定理、根的判别式、点到直线的距离公式和弦长公式、椭圆性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{25}{6}$ | B. | $\frac{25}{8}$ | C. | $\frac{25}{3}$ | D. | $\frac{25}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 10 | C. | 5 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰三角形 | B. | 直角三角形 | C. | 锐角三角形 | D. | 钝角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com