精英家教网 > 高中数学 > 题目详情
已知集合M={a,0},N={x|x2-3x<0,x∈Z},而且M∩N={1},若P=M∪N,写出集合P的所有子集.
考点:并集及其运算,交集及其运算
专题:集合
分析:求出N中不等式的解集确定出N,根据M与N的交集求出a的值,确定出M,求出M与N的并集,找出并集的所有子集即可.
解答: 解:由N中的不等式变形得:x(x-3)<0,x∈Z,
解得:0<x<3,x∈Z,即N={1,2},
∵M={a,0},M∩N={1},
∴a=1,即M={0,1},
∴P=M∪N={0,1,2},
则P的所有子集有:{0};{1};{2};{0,1};{0,2};{1,2};{0,1,2};∅.
点评:此题考查了并集及其运算,交集及其运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax2(a∈R),求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点E(-
1
2
,0),点F是圆(x-
1
2
2+y2=4上的动点,线段EF的垂直平分线交FM于点P,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

据IEC(国际电工委员会)调查显示,小型风力发电项目投资较少,且开发前景广阔,但受风力自然资源影响,项目投资存在一定风险.根据测算,风能风区分类标准如下:
风能分类 一类风区 二类风区
平均风速m/s 8.5~10 6.5~8.5
假设投资A项目的资金为x(x≥0)万元,投资B项目资金为y(y≥0)万元,调研结果是:未来一年内,位于一类风区的A项目获利30%的可能性为0.6,亏损20%的可能性为0.4;位于二类风区的B项目获利35%的可能性为0.6,亏损10%的可能性是0.1,不赔不赚的可能性是0.3.
(1)记投资A,B项目的利润分别为ξ和η,试写出随机变量ξ与η的分布列和期望Eξ,Eη;
(2)某公司计划用不超过100万元的资金投资于A,B项目,且公司要求对A项目的投资不得低于B项目,根据(1)的条件和市场调研,试估计一年后两个项目的平均利润之和z=Eξ+Eη的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点,焦点在x轴上,离心率为
2
2
,它的一个焦点恰好与抛物线y2=4x的焦点重合.
(1)求椭圆C的方程;
(2)设椭圆的上顶点为A,过点A作椭圆C的两条动弦AB,AC,若直线AB,AC斜率之积为
1
4
,直线BC是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点为F(1,0),离心率为
2
2
.设P是椭圆C长轴上的一个动点,过点P且斜率为1的直线l交椭圆于A,B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求|PA|2+|PB|2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC=120°,∠ADC=150°,BD=1(千米),AC=3(千米).假设小王和小李徒步攀登的速度为每小时1200米,请问:两位登山爱好者能否在2个小时内徒步登上山峰.(即从B点出发到达C点)

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,已知a2=-7,S6=-24.
(1)求等差数列{an}的前n项和Sn
(2)当n为何值时,数列{
Sn+100
n
}有最小项,并求出最小项的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x>0,y>0,且
x
x
+
y
)=3
y
x
+5
y
),求
2x+2
xy
+3y
x-
xy
+y
的值.

查看答案和解析>>

同步练习册答案