【题目】在△ABC中,已知 ,sinB=cosAsinC,S△ABC=6,P为线段AB上的点,且 ,则xy的最大值为 .
【答案】3
【解析】解:△ABC中,设AB=c,BC=a,AC=b,∵sinB=cosAsinC,sin(A+C)=sinCcosnA,
即sinAcosC+sinCcosA=sinCcosA.
∴sinAcosC=0,∵sinA≠0,∴cosC=0,C=90°.
∵ =9,S△ABC=6,∴bccosA=9, bcsinA=6,∴tanA= .
根据直角三角形可得sinA= ,cosA= ,bc=15,∴c=5,b=3,a=4.
以AC所在的直线为x轴,以BC所在的直线为y轴建立直角坐标系可得C(0,0),A(3,0),B(0,4).
P为线段AB上的一点,则存在实数λ使得 =λ +(1﹣λ) =(3λ,4﹣4λ)(0≤λ≤1).
设 = , = ,则| |=| |=1,且 =(1,0), =(0,1).
∴ =(x,0)+(0,y)=(x,y),可得x=3λ,y=4﹣4λ则4x+3y=12,
12=4x+3y≥2 ,解得xy≤3,
故所求的xy最大值为:3.
所以答案是 3.
【考点精析】根据题目的已知条件,利用平面向量的基本定理及其意义的相关知识可以得到问题的答案,需要掌握如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使.
科目:高中数学 来源: 题型:
【题目】如图,已知单位圆x2+y2=1与x轴正半轴交于点P,当圆上一动点Q从P出发沿逆时针方向旋转一周回到P点后停止运动设OQ扫过的扇形对应的圆心角为xrad,当0<x<2π时,设圆心O到直线PQ的距离为y,y与x的函数关系式y=f(x)是如图所示的程序框图中的①②两个关系式
(Ⅰ)写出程序框图中①②处的函数关系式;
(Ⅱ)若输出的y值为2,求点Q的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx+ ,a∈R.
(1)若f(x)的最小值为0,求实数a的值;
(2)证明:当a=2时,不等式f(x)≥ ﹣e1﹣x恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某服装批发市场1-5月份的服装销售量与利润的统计数据如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
销售量 (万件) | 3 | 6 | 4 | 7 | 8 |
利润 (万元) | 19 | 34 | 26 | 41 | 46 |
(1)从这五个月的利润中任选2个,分别记为, ,求事件“, 均不小于30”的概率;
(2)已知销售量与利润大致满足线性相关关系,请根据前4个月的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的利润的估计数据与真实数据的误差不超过2万元,则认为得到的利润的估计数据是理想的.请用表格中第5个月的数据检验由(2)中回归方程所得的第5个月的利润的估计数据是否理想.参考公式: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当时,函数的值域是_________.
【答案】[-1,2]
【解析】:f(x)=sinx+cosx=2(sinx+cosx)=2sin(x+),
∵﹣≤x≤,
∴﹣≤x+≤,
∴﹣≤sin(x+)≤1,
∴函数f(x)的值域为[﹣1,2],
故答案为:[﹣1,2].
【题型】填空题
【结束】
15
【题目】若点O在内,且满足,设为的面积, 为的面积,则=________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+2a|+|x﹣1|,a∈R.
(1)当a=1时,解不等式f(x)≤5;
(2)若f(x)≥2对于x∈R恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量,,设函数.
(1)若函数的图象关于直线对称,且时,求函数的单调增区间;
(2)在(1)的条件下,当时,函数有且只有一个零点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中
(1)判断并证明函数的奇偶性;
(2)判断并证明函数在上的单调性;
(3)是否存在这样的负实数,使对一切恒成立,若存在,试求出取值的集合;若不存在,说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:
不关注 | 关注 | 总计 | |
男生 | 30 | 15 | 45 |
女生 | 45 | 10 | 55 |
总计 | 75 | 25 | 100 |
根据表中数据,通过计算统计量K2= ,并参考一下临界数据:
P(K2>k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
若由此认为“学生对2018年俄罗斯年世界杯的关注与性别有关”,则此结论出错的概率不超过( )
A.0.10
B.0.05
C.0.025
D.0.01
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com