精英家教网 > 高中数学 > 题目详情
已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*).
(Ⅰ)设bn=an+1,求数列{bn}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)根据条件,建立方程组即可求出数列{bn}的通项公式;
(Ⅱ)利用分组求和法或构造法求出数列的前n项和Sn
解答: 解:(Ⅰ)由Sn+1=2Sn+n+5(n∈N*
得 Sn=2Sn-1+(n-1)+5(n∈N*,n≥2)
两式相减得 an+1=2an+1,
∴an+1+1=2(an+1)
即  bn+1=2bn(n∈N*,n≥2),
又a2=S2-S1=S1+1+5=a1+6=11
∴b2=a2+1=12,b1=a1+1=6
∴b2=2b1
∴数列{bn}是首项为6,公比为2的等比数列
bn=6•2n-1=3•2n
(Ⅱ)法一
由(Ⅰ)知an=3•2n-1
∴Sn=a1+a2+…+an=3×2+3×22+…+3•2n-n=
2(2n-1)
2-1
-n
=6•2n-n-6=3•2n+1-n-6.  
(Ⅱ)法二
由已知Sn+1=2Sn+n+5(n∈N*)①
设Sn+1+c(n+1)+d=2(Sn+cn+d)
整理得  Sn+1=2Sn+cn+d-c②
对照①、②,得  c=1,d=6,
即①等价于 Sn+1+(n+1)+6=2(Sn+n+6)
∴数列{Sn+n+6}是等比数列,首项为S1+1+6=a1+1+6=12,公比为q=2
Sn+n+6=12•2n-1=3•2n+1
Sn=3•2n+1-n-6
点评:本题主要考查数列的通项公式和前n项和的计算,要求熟练掌握相应的求和公式,考查学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x∈[
1
9
,27]
,求函数f(x)=log3(9x)•log
3
(
x
3
)
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4x+a+3,g(x)=mx+5-2m.
(1)当x∈[-
π
2
,π]
时,若函数y=f(sinx)存在零点,求实数a的取值范围并讨论零点个数;
(2)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
x+2
x-1
≤0
的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校举行知识竞赛,第一轮选拔共设有1,2,3三个问题,每位参赛者按问题1,2,3的顺序作答,竞赛规则如下:
①每位参赛者计分器的初始分均为10分,答对问题1,2,3分别加1分,2分,3分,答错任一题减2分;
②每回答一题,积分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于12分时,答题结束,进入下一轮;当答完三题,累计分数仍不足12分时,答题结束,淘汰出局.
已知甲同学回答1,2,3三个问题正确的概率依次为
3
4
1
2
1
3
,且各题回答正确与否相互之间没有影响.
(1)求甲同学能进入下一轮的概率;
(2)用X表示甲同学本轮答题结束时累计分数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-
b
x
-2lnx,f(1)=0
(Ⅰ)若函数f(x)在其定义域内为单调函数,求实数a的取值范围;
(Ⅱ)若函数f(x)的图象在x=1处的切线斜率为0,且an+1=f′(
1
an-n+1
)
-n+1,已知a1=4,求证an≥2n+2;
(Ⅲ)在(Ⅱ)的条件下,试比较
1
1+a1
+
1
1+a2
+
1
1+a3
+…+
1
1+an
2
5
的大小,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(Ⅰ)求在1次游戏中获奖的概率;
(Ⅱ)求在2次游戏中获奖次数X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax-b的零点是1,则g(x)=bx2-ax的零点是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)Sn=1-2+3-4+5-6+…+(-1)n+1•n,则S100+S200+S301等于(  )
A、1B、-1C、51D、52

查看答案和解析>>

同步练习册答案