精英家教网 > 高中数学 > 题目详情
17.若椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦点为F1,F2,点P在椭圆上,且满足|PO|2=|PF1|•|PF2|( O为坐标原点),则称点P为“●”点,则此椭圆上的“●”点有(  )
A.8个B.4个C.2个D.0个

分析 由椭圆中${b^2}<|P{F_1}||P{F_2}|<{a^2}$,b≤|PO|≤a,b2≤|PO|2≤a2,因此满足条件的有四个点,

解答 解:${b^2}<|P{F_1}||P{F_2}|<{a^2}$,b≤|PO|≤a,b2≤|PO|2≤a2,因此满足条件的有四个点,
故选:B.

点评 本题主要考查椭圆的新定义问题,特别是焦半径的转化问题.考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在各项均为正数的等比数列{an}中.若a3a5=4,则a1a2a3a4a5a6a7=128.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过M(1,3)引圆x2+y2=2的切线,切点分别为A、B,则△AMB的面积为(  )
A.$\frac{32}{5}$B.4C.$\frac{16}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆的方程为x2+y2-8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是(  )
A.$-\frac{4}{3}$B.$-\frac{5}{3}$C.$-\frac{3}{5}$D.$-\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC的内角A、B、C所对的边分别为a、b、c,若a=1,b+c=$\sqrt{6}$,且cosA=$\frac{1}{4}$,则△ABC的面积为$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{1}{2}$,且过点$(1,\frac{3}{2})$,其长轴的左右两个端点分别为A,B,直线l:y=$\frac{3}{2}$x+m交椭圆于两点C,D.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线AD,CB的斜率分别为k1,k2,若k1:k2=2:1,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设动直线l:y=kx+m(其中k,m为整数)与椭圆$\frac{x^2}{16}+\frac{y^2}{12}=1$交于不同两点A,B,与双曲线$\frac{x^2}{4}-\frac{y^2}{12}=1$交于不同两点C,D,且$\overrightarrow{AC}$+$\overrightarrow{BD}$=$\overrightarrow{0}$,则符合上述条件的直线l共有(  )
A.5条B.7条C.9条D.11条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某学校有120名教师,且年龄都在20岁到60岁之间,各年龄段人数按分组,其频率分布直方图如图所示,学校要求每名教师都要参加两项培训,培训结束后进行结业考试.已知各年龄段两项培训结业考试成绩优秀的人数如表示,假设两项培训是相互独立的,结业考试成绩也互不影响.
年龄分组A项培训成绩优秀人数B项培训成绩优秀人数
[20,30)3018
[30,40)3624
[40,50)129
[50,60]43
(1)若用分层抽样法从全校教师中抽取一个容量为40的样本,求从年龄段[20,30)抽取的人数;
(2)求全校教师的平均年龄;
(3)随机从年龄段[20,30)和[30,40)内各抽取1人,设这两人中两项培训结业考试成绩都优秀的人数为X,求X的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0)为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,点P在椭圆C上,且△PF1F2面积的最大值为$\sqrt{3}$.
(Ⅰ)求椭圆C的方程
(Ⅱ)若直线l与椭圆C交于A,B两点.△OAB的面积为1,$\overrightarrow{OG}$=s$\overrightarrow{OA}$+t$\overrightarrow{OB}$(s,t∈R),当点G在椭圆C上运动时,试问s2+t2是否为定值,若是定值,求出这个定值,若不是定值,求出s2+t2的取值范围.

查看答案和解析>>

同步练习册答案