精英家教网 > 高中数学 > 题目详情
如图所示,已知⊙O的半径为5,两弦AB、CD相交于AB的中点E,且AB=8,CE:ED=4:9,则圆心到弦CD的距离为(  )
A、
2
14
3
B、
28
9
C、
2
7
3
D、
80
9
考点:与圆有关的比例线段
专题:选作题,立体几何
分析:作OF⊥CD,垂足为F,利用相交弦定理求出CE与DE的长,再利用勾股定理求出OF的长.
解答: 解:作OF⊥CD,垂足为F,
∵两弦AB、CD相交于AB中点E,且AB=8,CE:ED=4:9,
∴AE=BE=4,AE×BE=CE×DE,
假设CE=4x,DE=9x,
∴4×4=4x•9x,
解得:x=
2
3

∴CE=4×
2
3
=
8
3
,DE=9×
2
3
=6;
∵OF⊥CD,
∴DF=CF=
13
3
,⊙O的半径为5,
∴OF=
52-(
13
3
)2
=
2
14
3

故选:A.
点评:此题主要考查了相交弦定理,垂径定理,勾股定理等知识,题目有一定综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若当P(m,n)为圆x2+(y-1)2=1上任意一点时,不等式m+n+c≥0恒成立,则c的取值范围是(  )
A、-1-
2
≤c≤
2
-1
B、
2
-1≤c≤
2
+1
C、c≤-
2
-1
D、c≥
2
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

cos240°=(  )
A、-
3
2
B、
3
2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c均为正数,且x=a+
1
b
,y=b+
1
c
,z=c+
1
a
,则x,y,z三个数(  )
A、至少有一个不大于2
B、都小于2
C、至少有一个不小于2
D、都大于2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=asinx+b
3x
+4(a,b∈R)且f(lglog310)=5,则f(lglg3)=(  )
A、0B、-3C、-5D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=
5
1+2i
,则|z|=(  )
A、1
B、
5
5
C、
5
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

某高校在2011年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
(Ⅰ)请先求出频率分布表中①、②位置相应的数据,完成频率分布直方图;
(Ⅱ)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
组号分组频数频率
第1组[160,165)50.050
第2组[165,170)0.350
第3组[170,175)30
第4组[175,180)200.200
第5组[180,185]100.100
合计1001.00

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是半圆O的直径,延长AB到C,使BC=
3
,CD切半圆O于点D,DE⊥AB,垂足为E.若AE:EB=3:1,求DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-
m
x+1
,定义域为(-1,+∞),且f(2)=-1
(1)求m的值;
(2)试判断函数f(x)在定义域上的单调性,并用定义加以证明;
(3)在定义域内利用单调性解不等式f(x)<-1.

查看答案和解析>>

同步练习册答案