精英家教网 > 高中数学 > 题目详情
1.已知x、y满足$\left\{\begin{array}{l}{y≤x}\\{x+2y≤4}\\{y≥-2}\end{array}\right.$,求:
(1)t=x2+y2+2x-2y+2的最小值;
(2)t=|x-y+1|的最大值;
(3)t=$\frac{y+3}{x-1}$的取值范围;
(4)t=xy的取值范围.

分析 (1)画出约束条件表示的平面区域,由t表示平面区域内的点,到点M(-1,1)距离的平方,求出t的最小值;
(2)由题意去掉绝对值,结合图形得出最优解,求出t的最大值;
(3)利用直线的斜率求出t的取值范围;
(4)根据反比例函数的意义求出t的最大、最小值.

解答 解:画出约束条件$\left\{\begin{array}{l}{y≤x}\\{x+2y≤4}\\{y≥-2}\end{array}\right.$表示的平面区域,如图所示;

(1)由t=x2+y2+2x-2y+2=(x+1)2+(y-1)2
表示平面区域内的点,到点M(-1,1)距离的平方,
且点M(-1,1)到直线y=x的距离为:
d=$\frac{|-1×1-1×1|}{\sqrt{{1}^{2}{+(-1)}^{2}}}$=$\sqrt{2}$,如图1所示;

故所求的最小值为t=d2=2;
(2)由t=|x-y+1|,得±t=x-y+1,
即y=x±t+1,令$\left\{\begin{array}{l}{x+2y=4}\\{y=-2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=8}\\{y=-2}\end{array}\right.$,A(8,-2),
如图2所示;

此时t取得最大值为8-(-2)+1=11;
(3)t=$\frac{y+3}{x-1}$表示区域内的点与N点(1,-3)连线的斜率,
由$\left\{\begin{array}{l}{y=x}\\{y=-2}\end{array}\right.$,得B(-2,-2),计算kBN=$\frac{-3+2}{1+2}$=-$\frac{1}{3}$;
A(8,-2),kAN=$\frac{-3+2}{1-8}$=$\frac{1}{7}$,如图3所示;

所以t得取值范围是t≤-$\frac{1}{3}$或t≥$\frac{1}{7}$;
(4)由t=xy得y=$\frac{t}{x}$,根据反比例函数的意义知,
曲线过点B(-2,-2)时,t取得最大值为4;
曲线过点A(8,-2)时,t取得最小值为-16;
∴t的取值范围是[-16,4].

点评 本题考查了线性规划的应用问题,也考查了数形结合解题方法,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为3的正三角形,SC是球O的直径,且SC=4,则此三棱锥的体积V=$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=cos2x-4cosx+1的最小值是(  )
A.-3B.-2C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.种子发芽率与昼夜温差有关.某研究性学习小组对此进行研究,他们分别记录了3月12日至3月16日的昼夜温差与每天100颗某种种子浸泡后的发芽数,如表:
日    期3月12日3月13日3月14日3月15日3月16日
昼夜温差(°C)101113128
发芽数(颗)2325302616
(I)从3月12日至3月16日中任选2天,记发芽的种子数分别为c,d,求事件“c,d均不小于25”的概率;
(II)请根据3月13日至3月15日的三组数据,求出y关于x的线性回归方程$\widehaty=\widehata+\widehatbx$;
(III)若由线性回归方程得到的估计数据与实际数据误差均不超过2颗,则认为回归方程是可靠的,试用3月12日与16日的两组数据检验,(II)中的回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若“m>a”是“函数$f(x)={({\frac{1}{3}})^x}+m-\frac{1}{3}$的图象不过第三象限”的必要不充分条件,则实数a的取值范围是(  )
A.$a≥-\frac{2}{3}$B.$a>-\frac{2}{3}$C.$a≤-\frac{2}{3}$D.$a<-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知二次数f(x)=ax2+bx+c(a≤b)的值域为[0,+∞),则$\frac{a-b+4c}{a+b}$的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.(x+1)(x2-$\frac{2}{{x}^{3}}$)5的展开式中的常数项为40.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数中,最小正周期为π且一条对称轴为$x=\frac{π}{8}$的函数是(  )
A.y=sin2x+cos2xB.y=sinx+cosxC.$y=cos(2x+\frac{π}{2})$D.$y=sin(2x+\frac{π}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数y=sinx+$\sqrt{3}$cosx的图象向左平移φ>0个单位后,所得图象关于y轴对称,则φ的最小值是$\frac{π}{6}$.

查看答案和解析>>

同步练习册答案