精英家教网 > 高中数学 > 题目详情
11.已知集合A={x|y=$\sqrt{{x}^{2}-2x-3}$},B={y|y=$\sqrt{{x}^{2}-2x-3}$},则A∩B=(  )
A.[3,+∞)B.(-∞,-1]∪[3,+∞)C.(-∞,1]D.R

分析 求出A中x的范围确定出A,求出B中y得到范围确定出B,找出两集合的交集即可.

解答 解:由A中y=$\sqrt{{x}^{2}-2x-3}$,得到x2-2x-3≥0,即(x-3)(x+1)≥0,
解得:x≤-1或x≥3,即A=(-∞,-1]∪[3,+∞),
由B中y=$\sqrt{{x}^{2}-2x-3}$≥0,得到B=[0,+∞),
则A∩B=[3,+∞),
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.椭圆$\frac{{x}^{2}}{150}$+$\frac{{y}^{2}}{200}$=$\frac{1}{2}$的离心率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设学生的考试成绩为G,则下面的代码的算法目的是(  )
n←0
m←0
While n<50
Read G
If G<60then m←m+1
n←n+1
End while
Print m.
A.计算50个学生的平均成绩B.计算50个学生中不及格的人数
C.计算50个学生中及格的人数D.计算50个学生的总成绩

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.空间四边形ABCD中,AB=CD,边AB.CD所在直线所成的角为30°,E、F分别为边BC、AD的中点,则直线EF与AB所成的角为(  )
A.75°B.15°C.75°或15°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知定义在R上的奇函数f(x)有最小正周期4,且x∈(0,2)时,f(x)=$\frac{e^x}{x}$.
(1)求f(x)在[-2,2]上的解析式;
(2)若函数y=f(x)-2m在($\frac{1}{2}$,2)内有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.下面是调查某班所有学生身高的数据:
分组频数频率
[156,160)
[160,164)4
[164,168)12
[168,172)12
[172,176)0.26
[176,180]6
合计50
(I) 完成上面的表格;  
(Ⅱ)根据上表估计,数据在[164,176)范围内的频率是多少?
(Ⅲ)根据上表,画出频率分布直方图,并根据直方图估计出数据的众数、中位数与平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在棱锥S-ABCD中,底面ABCD为菱形,平面SAD⊥平面ABCD,SA=SD,E、P、Q分别是棱AD、SC、AB的中点.
(1)求证:PQ∥平面SAD;
(2)求证:AC⊥平面SEQ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,则该几何体的外接球的体积为(  )
A.12πB.$4\sqrt{3}π$C.$12\sqrt{3}π$D.$\frac{4}{3}\sqrt{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=lnx-ax(a>0)的单调递增区间为(  )
A.(0,$\frac{1}{a}$)B.($\frac{1}{a}$,+∞)C.(-∞,$\frac{1}{a}$)D.(-∞,a)

查看答案和解析>>

同步练习册答案