精英家教网 > 高中数学 > 题目详情
4.椭圆$\frac{{x}^{2}}{150}$+$\frac{{y}^{2}}{200}$=$\frac{1}{2}$的离心率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.2

分析 化简椭圆方程,然后求解离心率即可.

解答 解:椭圆$\frac{{x}^{2}}{150}$+$\frac{{y}^{2}}{200}$=$\frac{1}{2}$的标准方程为:$\frac{{y}^{2}}{100}+\frac{{x}^{2}}{75}=1$,可得a=10,c=5,e=$\frac{1}{2}$.
故选:B.

点评 本题考查椭圆的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=cosx•cos(x-$\frac{π}{3}$),则使f(x)<$\frac{1}{4}$成立的x的取值集合是
(kπ-$\frac{7π}{12},kπ-\frac{π}{12}$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若直线y=-x+b与曲线x=$\sqrt{1-{y^2}}$恰有一个公共点,则b的取值范围是$-1≤b<1或b=\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个不透明的袋子装有4个完全相同的小球,球上分别标有数字为0,1,2,2,现甲从中摸出一个球后便放回,乙再从中摸出一个球,若摸出的球上数字大即获胜(若数字相同则为平局),则在甲获胜的条件下,乙摸1号球的概率为(  )
A.$\frac{5}{16}$B.$\frac{9}{16}$C.$\frac{1}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点的极坐标为(2,$\frac{5π}{6}$),其直角坐标为$(-\sqrt{3},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{e}$为平面向量,若|$\overrightarrow{e}$|=1,$\overrightarrow{a}$•$\overrightarrow{e}$=1,$\overrightarrow{b}$•$\overrightarrow{e}$=2,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$+$\overrightarrow{b}$|的最小值为3,$\overrightarrow{a}$•$\overrightarrow{b}$的最小值为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知P为椭圆$\frac{x^2}{4}$+y2=1上任意一点,F1,F2是椭圆的两个焦点,则|PF1|•|PF2|的最大值是4,|PF1|2+|PF2|2的最小值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3-3x,求f(x)在x=3处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|y=$\sqrt{{x}^{2}-2x-3}$},B={y|y=$\sqrt{{x}^{2}-2x-3}$},则A∩B=(  )
A.[3,+∞)B.(-∞,-1]∪[3,+∞)C.(-∞,1]D.R

查看答案和解析>>

同步练习册答案