精英家教网 > 高中数学 > 题目详情
9.在《九章算术》方田章圆田术(刘徽注)中指出:,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过程,比如在$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$中“…”即代表无限次重复,但原式却是个定值x,这可以通过方程$\sqrt{2+x}$确定出来x=2,类似地不难得到1+$\frac{1}{1+\frac{1}{1+…}}$=$\frac{\sqrt{5}+1}{2}$.

分析 由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根),可得要求的式子.

解答 解:可以令1+$\frac{1}{1+\frac{1}{1+…}}$=t(t>0),由1+$\frac{1}{t}$=t解的其值为$\frac{\sqrt{5}+1}{2}$,
故答案为:$\frac{\sqrt{5}+1}{2}$.

点评 本题考查类比推理的思想方法,考查从方法上类比,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=5,|$\overrightarrow{a}$+$\overrightarrow{b}$|=7.
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)当向量k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$垂直时,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若“m-1<x<m+1”是“x2-2x-3>0”的充分不必要条件,则实数m的取值范围是(-∞,-2]∪[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设直线l1:3x+4y-5=0与l2:3x+4y+5=0间的距离为d,则d=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在一条笔直公路上有A,B两地,甲骑自行车从A地到B地,乙骑着摩托车从B地到A地,到达A地后立即按原路返回,如图是甲乙两人离A地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:
(1)直接写出y,y与x之间的函数关系式(不必写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;
(2)若两人之间的距离不超过5km时,能够用无线对讲机保持联系,求在乙返回过程中有多少分钟甲乙两人能够用无线对讲机保持联系;
(3)若甲乙两人离A地的距离之积为f(x),求出函数f(x)的表达式,并求出它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知m,n是两条不同的直线,α,β是两个不同平面,则以下命题不成立的是(1)(2)(4)
(1)若α∥β,m?α,n?β,则 m∥n
(2)若m∥β,β⊥α,则 m⊥α
(3)若m⊥α,m?β,则 α⊥β
(4)若m∥α,n∥β,m∥n,则 α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在△ABC中,BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0,若点B的坐标为(1,2),求:
(Ⅰ)点A和点C的坐标;
(Ⅱ)△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(3,-5),则3$\overrightarrow{a}$+2$\overrightarrow{b}$等于(3,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设a=sin(sin2008°),b=sin(cos2008°),c=cos(sin2008°),d=cos(cos2008°).则a,b,c,d从小到大的顺序是b<a<d<c.

查看答案和解析>>

同步练习册答案