精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知焦点在x轴上的双曲线的渐近线方程为x±2y=0,则该双曲线的离心率为______.
∵焦点在x轴上的双曲线的渐近线方程为x±2y=0,
b
a
=
1
2
,∴a=2b,
c=
a2+b2
=
5
b,
∴e=
c
a
=
5
b
2b
=
5
2

故答案为:
5
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

经过双曲线x2-
y2
3
=1
的左焦点F1作倾斜角为
π
6
的直线AB,分别交双曲线的左、右支为点A、B.
(Ⅰ)求弦长|AB|;
(Ⅱ)设F2为双曲线的右焦点,求|BF1|+|AF2|-(|AF1|+|BF2|)的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以F1(-4,0),F2(4,0)为焦点的等轴双曲线的标准方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率e=
5
3
,则该双曲线的一条渐近线方程为(  )
A.y=
4
3
x
B.y=
3
4
x
C.y=
4
5
x
D.y=
3
5
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线9y2-16x2=144的渐近线方程为(  )
A.y=±
3
4
x
B.y=±
4
3
x
C.y=±
16
9
x
D.y=±
9
16
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
,点A、B在双曲线的右支上,线段AB经过双曲线的右焦点F2,|AB|=m,另一焦点为F1,那么△ABF1的周长是(  )
A.2a+2mB.4a+2mC.4aD.2a+4m

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线C的一条渐近线方程为x-2y=0,则该双曲线的离心率e=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线
x2
a2
-
y2
b2
=1
的两条渐近线互相垂直,则该双曲线的离心率是(  )
A.
3
B.
3
2
C.2D.
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2为双曲线C:
x2
16
-
y2
20
=1
的左、右焦点,P在双曲线上,且PF2=5,则cos∠PF1F2______.

查看答案和解析>>

同步练习册答案