精英家教网 > 高中数学 > 题目详情
已知函数f(x)满足-f(x)=f(-x),且当x∈(-∞,0)时,f(x)+xf′(x)<0成立,若a=(20.1)•f(20.1),b=(ln2)•f(ln2),c=(log2
1
8
)•f(log2
1
8
),则a,b,c的大小关系是(  )
A、a>b>c
B、c>b>a
C、c>a>b
D、a>c>b
考点:利用导数研究函数的单调性,导数的运算
专题:综合题,导数的综合应用
分析:令g(x)=xf(x),得g(x)是偶函数;由x∈(-∞,0)时,g′(x)=f(x)+xf′(x)<0,得函数g(x)在x∈(-∞,0)上单调递减,从而得g(x)在(0,+∞)上单调递增;再由∴函数g(x)在x∈(0,+∞)上单调递增.再由-
log
1
8
2
=3>20.1>1>ln2>0,得a,b,c的大小.
解答: 解:∵-f(x)=f(-x),∴f(x)是奇函数,
∴xf(x)是偶函数.
设g(x)=xf(x),当x∈(-∞,0)时,g′(x)=f(x)+xf′(x)<0,
∴函数g(x)在x∈(-∞,0)上单调递减,
∴函数g(x)在x∈(0,+∞)上单调递增.
∵-
log
1
8
2
=3>20.1>1>ln2>0,
∴g(
log
1
8
2
)>g(20.1)>g(ln2),
故选:C.
点评:本题考查了函数的图象与奇偶性关系以及用导数研究函数的单调性等知识,解题的关键是构造函数g(x)并求导,属于易出错的题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC中,|
CB
|cos∠ACB=|
BA
|cos∠CAB=
3
,且
AB
BC
=0,则AB长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线C1
x=-1+t
y=-1+at
(t为参数)与圆C2:ρ=2交于A、B两点,当|AB|最小时a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P是椭圆
x2
25
+
y2
16
=1上的动点,F1为椭圆的左焦点,M(6,4)为定点,则|PM|+|PF1|的最大值是(  )
A、15
B、8+
17
C、10
D、4
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c是△ABC的三边长,且满足
.
222
abc
bca
.
=0,则△ABC一定是(  )
A、等腰非等边三角形
B、等边三角形
C、直角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

用二分法求方程3x+3x-8=0在区间(1,2)的过程中,设函数f(x)=3x+3x-8,算得f(1)<0,f(1.25)<0,f(1.5)>0,f(1.75)>0,则该方程的根属于(  )
A、(1,1.25)
B、(1.25,1.5)
C、(1.5,1.75)
D、(1.75,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=-xf′(x)的图象如图(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|3x-1|+ax+3
(Ⅰ)若a=1,解不等式f(x)≤4;
(Ⅱ)若函数f(x)有最小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={x|-1<x<9},A={x|1<x<a},若∁UA≠∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案