精英家教网 > 高中数学 > 题目详情
7.△ABC中,AB=5,AC=2$\sqrt{5}$,BC上的高AH=4,$\overrightarrow{AH}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则$\frac{x}{y}$=$\frac{2}{3}$.

分析 可过H作AC的平行线交AB于D,作AB的平行线,交AC于E,这样根据正弦定理及平行线的知识、三角函数的诱导公式即可得出$\frac{AD}{AE}=\frac{cosC}{cosB}$,而由条件容易求出cosC,cosB的值,进而得出$\frac{AD}{AE}=\frac{\sqrt{5}}{3}$.由向量加法的平行四边形法则及向量数乘的几何意义可得到$\overrightarrow{AH}=\frac{AD}{5}•\overrightarrow{AB}+\frac{AE}{2\sqrt{5}}•\overrightarrow{AC}$,进而可以求出x,y,从而得出$\frac{x}{y}$的值.

解答 解:如图,过H分别作AC,AB的平行线,分别交AB于D,AC于E;
则四边形ADHE为平行四边形;
由正弦定理,$\frac{AD}{AE}=\frac{AD}{DH}=\frac{sin∠AHD}{sin∠HAD}=\frac{sin(\frac{π}{2}-C)}{sin(\frac{π}{2}-B)}=\frac{cosC}{cosB}$;
在Rt△ABH中,AB=5,AH=4;
∴BH=3,cosB=$\frac{3}{5}$;
同理cosC=$\frac{2}{2\sqrt{5}}=\frac{\sqrt{5}}{5}$;
∴$\frac{AD}{AE}=\frac{\sqrt{5}}{3}$;
∵$\overrightarrow{AH}=\overrightarrow{AD}+\overrightarrow{AE}$=$\frac{AD}{AB}•\overrightarrow{AB}+\frac{AE}{AC}•\overrightarrow{AC}$;
又$\overrightarrow{AH}=x\overrightarrow{AB}+y\overrightarrow{AC}$;
∴$\left\{\begin{array}{l}{x=\frac{AD}{AB}=\frac{AD}{5}}\\{y=\frac{AE}{AC}=\frac{AE}{2\sqrt{5}}}\end{array}\right.$;
∴$\frac{x}{y}=\frac{2\sqrt{5}}{5}•\frac{AD}{AE}=\frac{2\sqrt{5}}{5}•\frac{\sqrt{5}}{3}=\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 考查正弦定理,两直线平行内错角相等,三角函数的诱导公式,向量加法的平行四边形法则,以及向量数乘的几何意义,平面向量基本定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数f(x)=x3+4x+5在x=1处的切线方程为7x-y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\frac{1}{{3}^{x}+1}$,则f(log23)+f(log4$\frac{1}{9}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}中a2=5,前4项和为S4=28;
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2n,Tn=anb1+an-1b2+an-2b3+…+a2bn-1+a1bn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且椭圆经过点(-2,0).
(1)求椭圆C的方程;
(2)过原点的直线与椭圆C交于A、B两点(A,B不是椭圆C的顶点),点D在椭圆C上,且AD⊥AB,直线BD与x轴y轴分别交于M,N两点,设直线BD,AM斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}中,a1=3,an+1-3an=0,bn=log3an,则数列{bn}的通项公式bn=(  )
A.3n+1B.3nC.nD.n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知随机变量X的分布列为:
 X 1 2
 P $\frac{1}{2}$ $\frac{1}{{2}^{2}}$ $\frac{1}{{2}^{n}}$
求随机变量Y=sin$\frac{π}{2}$X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l:y=-x+1与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0))相交于不同的两点A、B,且线段AB的中点P的坐标为($\frac{2}{3}$,$\frac{1}{3}$)
(1)求椭圆C离心率;
(2)设O为坐标原点,且2|OP|=|AB|,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.两台车床加工同一种零件,共100件,见下表:
合格品数次品数总数
第一台加工数451055
第二台加工数40545
总计8515100
设A表示“任取一件为合格品”,B表示“任取一件是第一台机床生产的”,
(1)求P(AB);
(2)求P(B),P(B|A);
(3)比较(2)中P(B|A)与P(B)的大小,请问对任意事件A,B,若P(A)>0,P(B)>0,P(B|A)与P(B)之间是否有确定的大小关系?若是给出证明;若否,举出反例.

查看答案和解析>>

同步练习册答案