精英家教网 > 高中数学 > 题目详情

【题目】给出下列五个命题:

①当时,有

②若是锐角三角形,则

③已知是等差数列的前项和,若,则

④函数的图像关于直线对称;

⑤当时,不等式恒成立,则实数的取值范围为.

其中正确命题的序号为___________

【答案】② ③

【解析】

逐一考查所给命题的真假即可.

逐一考查所给的命题:

①当时,,不满足,题中的命题错误

②若是锐角三角形,则,即

由余弦函数的单调性可得,即,题中的命题正确

③已知是等差数列的前项和,若

据此可得

题中的命题正确;

④设函数,则函数的图像如图所示,很明显函数图象不关于直线对称,题中的命题错误;

⑤当时,不等式恒成立,

据此可得:恒成立,

时,

时,

由对勾函数的性质可得:时,,

则实数的取值范围为,题中的命题错误.

综上可得,正确命题的序号为② .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某几何体的三视图和直观图如图所示,其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.

(1)证明:平面BCN⊥平面C1NB1;

(2)求二面角C-NB1-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以等腰直角三角形斜边BC上的高AD为折痕,把ABD和ACD折成互相垂直的两个平面后,某学生得出下列四个结论:

②∠BAC=60°;

三棱锥D﹣ABC是正三棱锥;

平面ADC和平面ABC的垂直.

其中正确的是(   )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(12分)
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得 = =9.97,s= = ≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数 作为μ的估计值 ,用样本标准差s作为σ的估计值 ,利用估计值判断是否需对当天的生产过程进行检查?剔除( ﹣3 +3 )之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, ≈0.09.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和公式为Sn=2n2-30n.

(1)求数列{an}的通项公式an;(2)求Sn的最小值及对应的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A,B是椭圆C: + =1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是(  )
A.(0,1]∪[9,+∞)
B.(0, ]∪[9,+∞)
C.(0,1]∪[4,+∞)
D.(0, ]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知圆圆心为,过点且斜率为的直线与圆相交于不同的两点

)求的取值范围

)是否存在常数,使得向量共线?如果存在,求值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面为正三角形,侧棱底面.已知 的中点,

(1)求证:平面平面

(2)求证:A1C∥平面

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是 ( )

A. B. C. D.

查看答案和解析>>

同步练习册答案