½â£º£¨1£©¡ßg¡ä£¨x£©=e
1-x-xe
1-x=e
1-x£¨1-x£©£¬
¡àg£¨x£©ÔÚÇø¼ä£¨0£¬1]Éϵ¥µ÷µÝÔö£¬ÔÚÇø¼ä[1£¬e£©Éϵ¥µ÷µÝ¼õ£¬
ÇÒg£¨0£©=0£¬g£¨1£©=1£¾g£¨e£©=e
2-e£¬
¡àg£¨x£©µÄÖµÓòTΪ£¨0£¬1]£®
£¨2£©ÔòÓÉ£¨1£©¿ÉµÃt¡Ê£¨0£¬1]£¬
ÔÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄt¡Ê£¨0£¬1]£¬f£¨x£©=tÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬
¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý£¬
¡ß

£¬£¨1¡Üx¡Üe£©£¬

£¬
µ±a¡Ý1ʱ£¬f¡ä£¨x£©£¾0£¬f£¨x£©ÔÚÇø¼ä[1£¬e]Éϵ¥µ÷µÝÔö£¬²»ºÏÌâÒ⣮
µ±a

ʱ£¬f¡ä£¨x£©£¼0£¬f£¨x£©ÔÚÇø¼ä[1£¬e]Éϵ¥µ÷µÝ¼õ£¬²»ºÏÌâÒ⣮
µ±1£¼

£¬¼´

ʱ£¬f£¨x£©ÔÚÇø¼ä[1£¬

]Éϵ¥µ÷µÝ¼õ£»f£¨x£©ÔÚÇø¼ä[

]Éϵ¥µÝÔö£¬
ÓÉÉϿɵÃa¡Ê£¨

£©£¬´Ëʱ±ØÓÐf£¨x£©µÄ×îСֵСÓÚµÈÓÚ0£¬
ÇÒf£¨x£©µÄ×î´óÖµ´óÓÚµÈÓÚ1£¬
¶øÓÉf£¨x£©
min=f£¨

£©=2+lna¡Ü0£¬
¿ÉµÃa

£¬Ôòa¡Ê∅£®
×ÛÉÏ£¬Âú×ãÌõ¼þµÄa²»´æÔÚ£®
£¨3£©k
AB=

=

=

=a-

£¬
¶ø

=

=a-

£¬
¹ÊÓÐ

=

£¬
¼´

=

=

£¬
Áît=

£¬
ÔòÉÏʽ»¯Îª

£¬
ÁîF£¨t£©=lnt+

-2£¬
ÔòÓÉ

=

£¾0£¬
¿ÉµÃF£¨t£©ÔÚ£¨0£¬1£©Éϵ¥µ÷µÝÔö£¬
¹ÊF£¨t£©£¼F£¨1£©=0£¬¼´·½³Ìlnt+

Î޽⣬
ËùÒÔº¯Êýf£¨x£©Í¼ÏóÉÏÊDz»´æÔÚÁ½µãA£¨x
1£¬y
1£©ºÍB£¨x
2£¬y
2£©£¬
ʹµÃ¸îÏßABµÄбÂÊÇ¡ºÃµÈÓÚº¯Êýf£¨x£©ÔÚABÖеãM£¨x
0£¬y
0£©´¦ÇÐÏßµÄбÂÊ£®
·ÖÎö£º£¨1£©ÓÉg¡ä£¨x£©=e
1-x-xe
1-x=e
1-x£¨1-x£©£¬Öªg£¨x£©ÔÚÇø¼ä£¨0£¬1]Éϵ¥µ÷µÝÔö£¬ÔÚÇø¼ä[1£¬e£©Éϵ¥µ÷µÝ¼õ£¬ÓÉ´ËÄÜÇó³ög£¨x£©µÄÖµÓòT£®
£¨2£©ÔòÓÉ£¨1£©¿ÉµÃt¡Ê£¨0£¬1]£¬ÔÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄt¡Ê£¨0£¬1]£¬f£¨x£©=tÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬
¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý£¬ÓÉ´ËÄÜÍÆµ¼³öÂú×ãÌõ¼þµÄa²»´æÔÚ£®
£¨3£©k
AB=

=

=a-

£¬¶ø

=

=a-

£¬

=

=

£¬ÓÉ´ËÄÜÍÆµ¼³öº¯Êýf£¨x£©Í¼ÏóÉÏÊDz»´æÔÚÁ½µãA£¨x
1£¬y
1£©ºÍB£¨x
2£¬y
2£©£¬Ê¹µÃ¸îÏßABµÄбÂÊÇ¡ºÃµÈÓÚº¯Êýf£¨x£©ÔÚABÖеãM£¨x
0£¬y
0£©´¦ÇÐÏßµÄбÂÊ£®
µãÆÀ£º±¾Ì⿼²éº¯ÊýµÄÖµÓòµÄÇ󷨣¬Ì½Ë÷ÊÇ·ñ´æÔÚÂú×ãÌõ¼þµÄʵÊý£¬Ì½Ë÷º¯ÊýͼÏóÉÏÂú×ãÌõ¼þµÄÁ½µãÊÇ·ñ´æÔÚ£®×ÛºÏÐÔÇ¿£¬ÄѶȴ󣬶ÔÊýѧ˼άÄÜÁ¦ÒªÇó½Ï¸ß£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®