精英家教网 > 高中数学 > 题目详情
在平行六面体ABCD-A1B1C1D1中,
AC1
=x
AB
+2y
AD
+3z
AA1
,则x+y+z=(  )
A、
11
6
B、
7
6
C、
5
6
D、
2
3
考点:空间向量的基本定理及其意义
专题:空间向量及应用
分析:根据题意,用
AB
BC
CC1
表示出
AC1
,求出x、y、z的值,计算x+y+z即可.
解答: 解:根据题意,得;
AC1
=
AC
+
CC1
=(
AB
+
BC
)+
CC1

=
AB
+
AD
+
AA1

又∵
AC1
=x
AB
+2y
AD
+3z
AA1

∴x=1,y=
1
2
,z=
1
3

∴x+y+z=1+
1
2
+
1
3
=
11
6

故选:A.
点评:本题考查了空间向量的基本定理的应用问题,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

sin(nπ-
3
)
cos(nπ+
π
3
)
(n∈Z)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-2,1),
b
=(1,-1),
m
=
a
+3
b
n
=
a
-k
b

(1)若
m
n
,求k的值
(2)当k=2时,求
m
n
夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个几何体的正(主)视图和侧(左)视图,其俯视图是面积为8
2
的矩形,则该几何体的表面积是(  )
A、2 0+8 
2
B、2 4+8 
2
C、8
D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2asinωxcosωx+2
3
cos2ωx-
3
(a>0,ω>0)的最大值为2,且最小正周期为π.
(I)求函数f(x)的解析式及其对称轴方程;
(II)若f(a)=
4
3
,求sin(4α+
π
6
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥D-ABC及其三视图中的主视图和下视图如图所示,则棱BD的长为
 
.三棱锥D-ABC的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线的向量参数方程为(x,y,z)=(5,0,3)+t(0,3,0),当t=
1
2
时,则对应直线上的点的坐标是(  )
A、(5,0,3)
B、(
5
2
,0,
3
2
C、(5,
3
2
,3)
D、(
5
2
3
2
,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的三视图如图所示,则四棱锥P-ABCD的四个侧面中的最大面积是(  )
A、6
B、8
C、2
5
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnex+1,数列{an}中,
1
e
<a1≤1,an=
1
e
f(an-1)(n≥2),(其中e=2.71828…是自然对数的底数).
求证:(1)f(x)≤ex;
(2)
1
e
<an≤1;
(3)(a1-a2)a2+(a2-a3)a3+…(an-an+1)an+1
e2-1
2e2

查看答案和解析>>

同步练习册答案