精英家教网 > 高中数学 > 题目详情
6.用数学归纳法证明:n3+5n能被6整除的过程中,当n=k+1时,式子(k+1)3+5(k+1)应变形为(k3+5k)+3k(k+1)+6.

分析 用数学归纳法证明:n3+5n能被6整除的过程中,当n=k+1时,式子(k+1)3+5(k+1)应变形为:(k3+5k)+3k(k+1)+6,

解答 解:用数学归纳法证明:n3+5n能被6整除的过程中,当n=k+1时,式子(k+1)3+5(k+1)应变形为:(k3+5k)+3k(k+1)+6,
由于假设k3+5k能够被6整除,而k(k+1)能够被2整除,因此3k(k+1)+6能够被6整除.
故答案为:(k3+5k)+3k(k+1)+6.

点评 本题考查了数学归纳法、乘法公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设(2x-1)n=a0+a1x+a2x2+…+anxn展开式中只有第5项的二项式系数最大.
(1)求n;
(2)求|a0|+|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x-a,x≥1}\\{{x}^{2}-3ax+2{a}^{2},x<1}\end{array}\right.$有3个零点,则实数a的取值范围是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求出函数y=sin($\frac{π}{3}$-$\frac{1}{2}$x),x∈[-2π,2π]的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知动圆C过点F(0,1),圆心C在x轴上方,且到点F的距离比到x轴的距离大1.
(Ⅰ) 求动圆圆心C的轨迹E的方程;
(Ⅱ) 设A、B是曲线E上两个不同的动点,过A、B分别作曲线E的切线,两切线相交于P点,且AP⊥BP,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x+a(x<0)}\\{f(x-1)(x≥0)}\end{array}\right.$,且函数y=f(x)-x恰有3个不同的零点,则实数a的取值范围是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图AB是抛物线C:x2=4y过焦点F的弦(点A在第二象限),过点A的直线交抛物线于点E,交y轴于点D(D在F上方),且|AF|=|DF|,过点B作抛物线C的切线l
(1)求证:AE∥l;
(2)当以AE为直径的圆过点B时,求AB的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知tan(α-β)=$\frac{1}{2}$,tanβ=-$\frac{1}{7}$,且α,β∈($\frac{π}{2}$,$\frac{3}{2}$π),则2α-β=$\frac{5π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数y=$\frac{1{0}^{x}-1{0}^{-x}}{2}$(x∈R),求反函数y=f-1(x).

查看答案和解析>>

同步练习册答案