分析 作出不等式组对应的平面区域,设z=x2+y2,利用z的几何意义进行求解即可.
解答 解:作出不等式组对应的平面区域,
设z=x2+y2,则z的几何意义是区域内的点到原点的距离的平方,
由图象知OA的值最小,
由$\left\{\begin{array}{l}{2x-y=0}\\{x-y+1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
此时z=12+22=5,
此时${2^{{x^2}+{y^2}}}$的最小值是25=32,
故答案为:32.![]()
点评 本题主要考查线性规划的应用,利用换元法结合数形结合是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com