精英家教网 > 高中数学 > 题目详情
5.已知$\left\{\begin{array}{l}2x-y≥0\\ x-y+1≤0\end{array}\right.$,则${2^{{x^2}+{y^2}}}$的最小值是32.

分析 作出不等式组对应的平面区域,设z=x2+y2,利用z的几何意义进行求解即可.

解答 解:作出不等式组对应的平面区域,
设z=x2+y2,则z的几何意义是区域内的点到原点的距离的平方,
由图象知OA的值最小,
由$\left\{\begin{array}{l}{2x-y=0}\\{x-y+1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
此时z=12+22=5,
此时${2^{{x^2}+{y^2}}}$的最小值是25=32,
故答案为:32.

点评 本题主要考查线性规划的应用,利用换元法结合数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.命题“设x,y∈R,若$\sqrt{x-2}$+(y+1)2=0,则x=2且y=-1”的否命题为是设x,y∈R,若$\sqrt{x-2}$+(y+1)2≠0,则x≠2或y≠-1”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若直线y=3x-2是曲线y=x3-2a的一条切线,则实数a的值为0或2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知b∈{x|$\frac{3-x}{x}$≥0},则直线x+by=0与圆(x-2)2+y2=2相离的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,则输出s的值等于(  )
A.1B.$\frac{1}{2}$C.0D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在六条棱长均相等的三棱锥A-BCD中,已知M,N,K分别是棱AB,CD,AC的中点,则下列结论中:
①MN∥AD;②NK∥平面ABD;③AB⊥CD;④平面CDM⊥平面ABN,正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.执行如图程序框图,输入n=4,A=4,x=2,输出结果A等于49.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,假设你在如图所示的图形中随机撒一粒黄豆,则它落到阴影部分的概率为$\frac{1}{π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系xOy中,双曲线$\frac{x^2}{a^2}-{y^2}$=1与抛物线y2=-12x有相同的焦点,则双曲线的两条渐近线的方程为$y=±\frac{{\sqrt{2}}}{4}x$.

查看答案和解析>>

同步练习册答案