精英家教网 > 高中数学 > 题目详情
20.执行如图所示的程序框图,则输出s的值等于(  )
A.1B.$\frac{1}{2}$C.0D.-$\frac{1}{2}$

分析 模拟执行如图所示的程序框图,得出该程序输出的是计算S的值,分析最后一次循环过程,即可得出结论.

解答 解:执行如图所示的程序框图,得:
该程序输出的是计算S的值;
当k=0时,满足条件,计算S=cos$\frac{6π}{3}$+cos$\frac{5π}{3}$+cos$\frac{4π}{3}$+cos$\frac{3π}{3}$+cos$\frac{2π}{3}$+cos$\frac{π}{3}$+cos0=1,
当k=-1时,不满足条件,输出S=1.
故选:A.

点评 本题考查了程序框图的应用问题,解题时应模拟程序的运行过程,以便得出正确的答案,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.将函数f(x)=sin(x+φ)(|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{6}$个单位后的图象关于y轴对称,则函数f(x)在[0,$\frac{π}{2}$]上的最小值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图程序运行后,得到的a,b,c分别为(  )
A.2,3,2B.2,3,1C.3,2,1D.3,2,3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知F1、F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点,由F1、F2分别作直线l:y=$\frac{2b}{\sqrt{3}a}$(x-1)的垂线段,垂足为M、N,若|MN|=$\sqrt{3}$c,则双曲线的离心率为(  )
A.$\sqrt{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.阅读如图所示的程序框图,运行相应的程序.若输入的n=3,则输出的结果为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$\left\{\begin{array}{l}2x-y≥0\\ x-y+1≤0\end{array}\right.$,则${2^{{x^2}+{y^2}}}$的最小值是32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2sin(ωx+φ)(ω<0,-π<φ<π)的部分图象如图所示.
(1)求f(x)的表达式;
(2)求函数f(x)在区间$[\frac{3π}{2},2π]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2lnx+ax(a∈R)
(Ⅰ)求函数f(x)的图象在点(1,f(1))处的切线在y轴上的截距;
(Ⅱ)对于任意的x0>0,记函数f(x)的图象在点(x0,f(x0))处的切线在y轴上的截距为g(x0),求g(x0)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.以双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F为圆心,a为半径的圆恰好与双曲线的两条渐近线相切,则该双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案