精英家教网 > 高中数学 > 题目详情
10.以双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F为圆心,a为半径的圆恰好与双曲线的两条渐近线相切,则该双曲线的离心率为$\sqrt{2}$.

分析 根据圆和渐近线的垂直关系建立方程条件进行求解即可.

解答 解:由题意知圆心F(c,0),双曲线的渐近线为y=±$\frac{b}{a}$x,不妨设其中一条为bx-ay=0,
∵圆与渐近线相切,
∴圆心到渐近线的距离d=$\frac{|bc|}{\sqrt{{a}^{2}+{b}^{2}}}=\frac{bc}{c}$=b=a,
即c=$\sqrt{{a}^{2}+{b}^{2}}=\sqrt{2}a$
即离心率e=$\frac{c}{a}$=$\sqrt{2}$,
故答案为:$\sqrt{2}$.

点评 本题主要考查双曲线离心率的计算,根据直线和圆的相切关系建立方程是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,则输出s的值等于(  )
A.1B.$\frac{1}{2}$C.0D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列命题中正确的有②③.
①常数数列既是等差数列也是等比数列;
②在△ABC中,若sin2A+sin2B=sin2C,则△ABC为直角三角形;
③若A,B为锐角三角形的两个内角,则tanAtanB>1;
④若Sn为数列{an}的前n项和,则此数列的通项an=Sn-Sn-1(n>1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,设倾斜角为α的直线l:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t为参数)与曲线C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数)相交于不同的两点A,B.
(1)若α=$\frac{π}{3}$,求直线AB的极坐标方程;
(2)若直线的斜率为$\frac{\sqrt{5}}{4}$,点P(2,$\sqrt{3}$),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列命题是真命题是(  )
A.?x∈R,使得|x|≤0成立B.¬p为真,则p∨q一定是假
C.x-y=0成立的充要条件是$\frac{x}{y}$=1D.?x∈R,都有ex>xe

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系xOy中,双曲线$\frac{x^2}{a^2}-{y^2}$=1与抛物线y2=-12x有相同的焦点,则双曲线的两条渐近线的方程为$y=±\frac{{\sqrt{2}}}{4}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,设内角A、B、C的对边分别为a、b、c,向量$\overrightarrow{m}$=(cosA+$\sqrt{2}$,sinA),向量$\overrightarrow{n}$=(-sinA,cosA),若|$\overrightarrow{m}$+$\overrightarrow{n}$|=2.
(1)求角A的大小;
(2)若b=4$\sqrt{2}$,且c=$\sqrt{2}$a,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.各项均不为零的等差数列{an}中,若an+1=an2-an-1(n∈N*,n≥2),则S2016=(  )
A.0B.2C.2015D.4032

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.曲线$\left\{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}\right.$(t为参数)的普通方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

同步练习册答案