精英家教网 > 高中数学 > 题目详情
10.已知数列{an}满足:an+1=2an,且a1,a2+1,a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an(n∈N*),试求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

分析 (I)由数列{an}满足:an+1=2an,且a1,a2+1,a3成等差数列.可得:2(a2+1)=a1+a3.解得a1.利用等比数列的通项公式即可得出an
(II)bn=log2an=n,可得$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$.利用“裂项求和”即可得出.

解答 解:(I)∵数列{an}满足:an+1=2an,且a1,a2+1,a3成等差数列.
∴2(a2+1)=a1+a3
∴4a1+2=a1+4a1,解得a1=2.
∴数列{an}是等比数列,首项与公比都为2.
∴an=2n
(II)bn=log2an=n,
∴$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$.
∴数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.

点评 本题考查了递推关系、等差数列与等比数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在等比数列中,an>0且an+2=an+3an+1,则公比q等于(  )
A.$\frac{3-\sqrt{13}}{2}$B.$\frac{3+\sqrt{13}}{2}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.平面上有以O为圆心,以1为半径的圆,圆上有三点A,B,C,向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$满足等式m$\overrightarrow{OA}$+n$\overrightarrow{OB}$=$\overrightarrow{OC}$,这里m,n∈R、mn≠0.
(1)若$\overrightarrow{OA}⊥\overrightarrow{OB}$,证明:m2+n2=1;
(2)若m=n=-1,试判断△ABC的形状并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,若输出的S=$\frac{25}{24}$,则判断框内填入的条件可以是(  )
A.k≥7B.k>7C.k≤8D.k<8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设复数z满足z•i=2-i,i为虚数单位,
p1:|z|=$\sqrt{5}$,
p2:复数z在复平面内对应的点在第四象限;
p3:z的共轭复数为-1+2i,
p4:z的虚部为2i.
其中的真命题为(  )
A.p1,p3B.p2,p3C.p1,p2D.p1,p4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R)
(1)证明:直线l恒过定点,并判断直线l与圆的位置关系;
(2)当直线l被圆C截得的弦长最短时,求直线l的方程及最短弦的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知关于x的方程${e^x}+{e^{-x}}-2a{log_2}(|x|+2)+{a^2}=5$有唯一实数解,则实数a的值为(  )
A.-1B.1C.-1或3D.1或-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),在极坐标系(与直角坐标系xOy取相同的单位长度,以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)设圆C与直线l交于点A,B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知变量x,y满足$\left\{\begin{array}{l}y≤x\\ x+y≥2\\ 2x+y≤6\end{array}\right.$,则z=2x-y的最大值为(  )
A.2B.10C.1D.12

查看答案和解析>>

同步练习册答案