精英家教网 > 高中数学 > 题目详情
4.若tanα=2,则2cos2α+3sin2α-sin2α的值为(  )
A.$\frac{2}{5}$B.-$\frac{2}{5}$C.5D.-$\sqrt{5}$

分析 根据题意,利用同角的三角函数关系,把2cos2α+3sin2α-sin2α化为正切函数,求值即可.

解答 解:∵tanα=2,
∴2cos2α+3sin2α-sin2α=$\frac{2{{(cos}^{2}α-sin}^{2}α)+6sinαcosα{-sin}^{2}α}{{sin}^{2}α{+cos}^{2}α}$
=$\frac{2-{3tan}^{2}α+6tanα}{{tan}^{2}α+1}$
=$\frac{2-3{×2}^{2}+6×2}{{2}^{2}+1}$
=$\frac{2}{5}$.
故选:A.

点评 本题考查了同角的三角函数关系与三角函数求值问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.同时掷两个骰子,各掷一次,向上的点数之和是6的概率是(  )
A.$\frac{1}{12}$B.$\frac{5}{36}$C.$\frac{1}{9}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合A={x∈N|lgx≤1},B={x|x2<16},则A∩B=(  )
A.(-∞,4)B.(0,4)C.{0,1,2,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+2x-1,则不等式f(x)+7<0的解集为(-∞,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2|x+a|+|x-$\frac{1}{a}$|(a≠0).
(1)当a=-1时,解不等式f(x)<4;
(2)求函数g(x)=f(x)+f(-x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若全集U=R,集合A={x|-1≤x<1},B={x|x≤0或x>2},则集合A∪∁UB=(  )
A.{x|0<x<1}B.{x|-1≤x≤2}C.{x|-1<x<2}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)对任意的x∈R,都有f(-x)+f(x)=-6,且当x≥0时,f(x)=2x-4,定义在R上的函数g(x)=a(x-a)(x+a+1),两函数同时满足:?x∈R,都有f(x)<0或g(x)<0;?x∈(-∞,-1),f(x)•g(x)<0,则实数a的取值范围为(  )
A.(-3,0)B.$(-3,-\frac{1}{2})$C.(-3,-1)D.(-3,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某初级中学篮球队假期集训,集训前共有8个篮球,其中4个是新的(即没有用过的球),4个是旧的(即至少用过一次的球),毎次训练都从中任意取出2个球,用完后放回,则第二次训练时恰好取到1个新球的概率为(  )
A.$\frac{24}{49}$B.$\frac{4}{7}$C.$\frac{25}{49}$D.$\frac{51}{98}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.五位同学按下列要求站一横排,分别有多少种不同的站法?
(1)甲乙必须相邻
(2)甲乙不相邻
(3)甲不站中间,乙不站两端
(4)甲,乙均在丙的同侧.

查看答案和解析>>

同步练习册答案