精英家教网 > 高中数学 > 题目详情

【题目】已知,数列A中的项均为不大于的正整数.表示的个数(.定义变换将数列变成数列其中.

1)若,对数列,写出的值;

2)已知对任意的),存在中的项,使得.求证:)的充分必要条件为);

3)若,对于数列,令,求证:.

【答案】1;(2)见解析;(3)见解析

【解析】

1)根据定义,表示,,…的个数,即可由数列的值.

2)根据对任意的,存在中的项,使得,由充分必要条件的判定,分必要性与充分性两步分别证明即可.

3)设,,…的所有不同取值为,且满足:..根据,结合题意中的变换可得,,,即可证明.

1)∵,对数列:,

.

2)证明:由于对任意的正整数,存在中的项,使得.所以均不为零.

必要性:,由于,

.

通过解此方程组,可得)成立.

充分性:若)成立,不妨设,可以得到

.

)成立.

)的充分必要条件为

3)证明:设,,…的所有不同取值为,且满足:.

不妨设,

其中.

又∵,根据变换有:

,,,

,,,

,,,

,

,,…,.

,

,,,

从而.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司航拍宣传画报,为了凸显公司文化,选择如图所示的边长为2百米的正三角形空地进行布置拍摄场景,在的中点处安装中央聚光灯,为边上得可以自由滑动的动点,其中设置为普通色彩灯带(灯带长度可以自由伸缩),线段部分需要材料 (单位:百米)装饰用以增加拍摄效果因材料价格昂贵,所以公司要求采购材料使用不造成浪费.

(1)当垂直时,采购部需要采购多少百米材料

(2)为了增加拍摄动态效果需要,现要求点边上滑动,且,则购买材料的范围是多少才能满足动态效果需要又不会造成浪费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场营销人员进行某商品的市场营销调查时发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以下表:

反馈点数t

1

2

3

4

5

销量(百件)/天

0.5

0.6

1

1.4

1.7

(Ⅰ)经分析发现,可用线性回归模型拟合当地该商品销量(千件)与返还点数之间的相关关系.试预测若返回6个点时该商品每天的销量;

(Ⅱ)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:

返还点数预期值区间

(百分比)

[1,3)

[3,5)

[5,7)

[7,9)

[9,11)

[11,13)

频数

20

60

60

30

20

10

将对返点点数的心理预期值在的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,求抽出的3人中至少有1名“欲望膨胀型”消费者的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知空间几何体中,均为边长为的等边三角形,为腰长为的等腰三角形,平面平面,平面平面.

(1)试在平面内作一条直线,使直线上任意一点的连线均与平面平行,并给出详细证明

(2)求点到平面的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F是抛物线Cy22pxp0)的焦点,若点Px04)在抛物线C上,且.

1)求抛物线C的方程;

2)动直线lxmy+1mR)与抛物线C相交于AB两点,问:在x轴上是否存在定点Dt0)(其中t≠0),使得kAD+kBD0,(kADkBD分别为直线ADBD的斜率)若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与抛物线相交于两点,与圆相切于点,为线段中点,若这样的直线恰有,的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三角形ABC为直角三角形,且EF分别为ABAC的中点,GH分别为BEAF的中点(如图一),现在沿EF将三角形AEF折起至,连接GH(如图二).

1)证明:平面

2)当平面平面EFCB时,求异面直线GHEF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数.

1)当时,求的单调区间和极值;

2)讨论的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线:为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线.

(1)说明是哪一种曲线,并将的方程化为极坐标方程;

(2)若直线的方程为,设的交点为的交点为,若的面积为,求的值.

查看答案和解析>>

同步练习册答案