【题目】某公司航拍宣传画报,为了凸显公司文化,选择如图所示的边长为2百米的正三角形
空地进行布置拍摄场景,在
的中点
处安装中央聚光灯,
为边
上得可以自由滑动的动点,其中
设置为普通色彩灯带(灯带长度可以自由伸缩),线段
部分需要材料
(单位:百米)装饰用以增加拍摄效果因材料
价格昂贵,所以公司要求采购
材料使用不造成浪费.
![]()
(1)当
,
与
垂直时,采购部需要采购多少百米材料
?
(2)为了增加拍摄动态效果需要,现要求点
在
边上滑动,且
,则购买材料
的范围是多少才能满足动态效果需要又不会造成浪费.
【答案】(1)
(百米);
(2)
(单位为百米).
【解析】
(1)因为
与
垂直,所以三角形
是直角三角形,利用锐角三角函数,可以求出
的长,这样可以求出
的长,在
中,利用正弦定理可以求出
的长,这样可以求出
的长,这样可以求出采购部需要采购材料
的数量;
(2)设
,根据
,可以求出
的取值范围,由
和三角形
等边三角形,可以证明出
与
相似,这样可以得到
之间的关系,这样
可以用关于
的式子表示,构造函数,利用函数的单调性,求出
的取值范围.
(1)三角形
等边三角形,
是
的中点,因此
,
,因为
与
重直,所以三角形
是直角三角形,因此有
,
所以
,因此
,在
中,由正弦定理可知:
,
,因此
,所以采购部需要采购材料
为
(百米);
(2)设
,当
与
重合时,由
,可求得
,所以
,
因为
,所以
,而
,
所以
,
,因此
与
相似,
所以有
,设
,
,
,当
时,
,函数
单调递增,当
时,
,函数
单调递减,故当
时,
有最大值2,
,所以
,购买材料
的范围是
(单位为百米).
科目:高中数学 来源: 题型:
【题目】改革开放40年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图表示体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).
![]()
(Ⅰ)从2007年至2016年这十年中随机选出一年,求该年体育产业年增加值比前一年多
亿元以上的概率;
(Ⅱ)从2007年至2011年这五年中随机选出两年,求至少有一年体育产业年增长率超过25%的概率;
(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[ 0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:
![]()
假设甲、乙两种酸奶独立销售且日销售量相互独立.
(1)写出频率分布直方图(甲)中的
的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为
,
,试比较
与
的大小;(只需写出结论)
(2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率;
(3)设
表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求
的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
,
,
,
,
分别为
,
边的中点,以
为折痕把
折起,使点
到达点
的位置,且
..
![]()
(Ⅰ)证明:
平面
;
(Ⅱ)设
为线段
上动点,求直线
与平面
所成角的正弦值的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,把长为6,宽为3的矩形折成正三棱柱
,三棱柱的高度为3,矩形的对角线和三棱柱的侧棱
、
的交点记为
.
![]()
(1)在三棱柱
中,若过
三点做一平面,求截得的几何体
的表面积;
(2)求三棱柱中异面直线
与
所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
.
(1)讨论
的单调性;
(2)若
有两个极值点
和
,记过点
,
的直线的斜率为k,问:是否存在m,使得
?若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线方程
,
为焦点,
为抛物线准线上一点,
为线段
与抛物线的交点,定义:
.
(1)当
时,求
;
(2)证明:存在常数
,使得
.
(3)
为抛物线准线上三点,且
,判断
与
的关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】奖饭店推出甲.乙两种新菜品,为了了解两种菜品的受欢迎程度,现统计一周内两种菜品每天的销售量,得到下面的茎叶图.下列说法中,不正确的是( )
![]()
A.甲菜品销售量的众数比乙菜品销售量的众数小
B.甲菜品销售量的中位数比乙菜品销售量的中位数小
C.甲菜品销售量的平均值比乙菜品销售量的平均值大
D.甲菜品销售量的方差比乙菜品销售量的方差大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,数列A:
,
,…
中的项均为不大于
的正整数.
表示
,
,…
中
的个数(
).定义变换
,
将数列
变成数列
:
,
,…
其中
.
(1)若
,对数列
:
,写出
的值;
(2)已知对任意的
(
),存在
中的项
,使得
.求证:
(
)的充分必要条件为
(
);
(3)若
,对于数列
:
,
,…
,令
:
,求证:
(
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com