【题目】如图,三角形ABC为直角三角形,且
,
,E,F分别为AB,AC的中点,G,H分别为BE,AF的中点(如图一),现在沿EF将三角形AEF折起至
,连接
,
,GH(如图二).
![]()
(1)证明:
平面
;
(2)当平面
平面EFCB时,求异面直线GH与EF所成角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知抛物线方程
,
为焦点,
为抛物线准线上一点,
为线段
与抛物线的交点,定义:
.
(1)当
时,求
;
(2)证明:存在常数
,使得
.
(3)
为抛物线准线上三点,且
,判断
与
的关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方形
和矩形
所在的平面互相垂直,
,点
在线段
上.
![]()
(Ⅰ)若
为
的中点,求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)证明:存在点
,使得
平面
,并求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,数列A:
,
,…
中的项均为不大于
的正整数.
表示
,
,…
中
的个数(
).定义变换
,
将数列
变成数列
:
,
,…
其中
.
(1)若
,对数列
:
,写出
的值;
(2)已知对任意的
(
),存在
中的项
,使得
.求证:
(
)的充分必要条件为
(
);
(3)若
,对于数列
:
,
,…
,令
:
,求证:
(
).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆Γ:
+
=1(a>b>0)的长轴长为4,离心率为
.
(1)求椭圆Γ的标准方程;
(2)过P(1,0)作动直线AB交椭圆Γ于A,B两点,Q(4,3)为平面上一定点连接QA,QB,设直线QA,QB的斜率分别为k1,k2,问k1+k2是否为定值,如果是,则求出该定值;否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知函数
的零点构成一个公差为
的等差数列,把函数
的图像沿
轴向左平移
个单位,得到函数
的图像,关于函数
,下列说法正确的是( )
A. 在
上是增函数
B. 其图像关于
对称
C. 函数
是奇函数
D. 在区间
上的值域为[-2,1]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分) 一个社会调查机构就某社区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).
![]()
(1)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,求月收入在
(元)段应抽出的人数;
(2)为了估计该社区3个居民中恰有2个月收入在
(元)的概率,采用随机模拟的方法:先由计算器产生0到9之间取整数值的随机数,我们用0,1,2,3,4表示收入在
(元)的居民,剩余的数字表示月收入不在
(元)的居民;再以每三个随机数为一组,代表统计的结果,经随机模拟产生了20组随机数如下:
907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989
据此估计,计算该社区3个居民中恰好有2个月收入在
(元)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
,点
,点
是平面直角坐标系内的动点,且点
到直线
的距离是点
到点
的距离的2倍.记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
的直线
与曲线
交于
、
两点,若
(
是坐标系原点)的面积为
,求直线
的方程;
(3)若(2)中过点
的直线
是倾斜角不为0的任意直线,仍记
与曲线
的交点为
、
,设点
为线段
的中点,直线
与直线
交于点
,求
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶7元,未售出的酸奶降价处理,以每瓶1.5元的价格当天全部处理完.据往年销售经验,每天需求量与当天最高气温(单位:
)有关,如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间
,需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频数分布表:
最高气温 |
|
|
|
|
|
|
天数 | 2 | 14 | 34 | 27 | 9 | 4 |
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为
(单位:元),若该超市在六月份每天的进货量均为450瓶,写出
的所有可能值,并估计
大于零的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com