11£®ÒÑÖªËÄÀâ×¶S-ABCDµÄµ×ÃæÎªÆ½ÐÐËıßÐΣ¬ÇÒSD¡ÍÃæABCD£¬AB=2AD=2SD£¬¡ÏDCB=60¡ã£¬M£¬N·Ö±ðΪSB£¬SCÖе㣬¹ýMN×÷Æ½ÃæMNPQ·Ö±ðÓëÏß¶ÎCD£¬ABÏཻÓÚµãP£¬Q£®
£¨¢ñ£©ÔÚͼÖÐ×÷³öÆ½ÃæMNPQ£¬Ê¹ÃæMNPQ¡¬ÃæSAD£¨²»ÒªÇóÖ¤Ã÷£©£»
£¨¢ò£©Èô$\overrightarrow{AQ}=¦Ë\overrightarrow{AB}$£¬ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹¶þÃæ½ÇM-PQ-BµÄÆ½Ãæ½Ç´óСΪ60¡ã£¿Èô´æÔÚ£¬Çó³öµÄ¦ËÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©QÊÇABµÄÖе㻭ͼ¼´¿É£®
£¨¢ò£©Ö¤Ã÷AD¡ÍBD£¬ÒÔDΪԭµã£¬Ö±ÏßDAΪxÖᣬֱÏßDBΪyÖᣬֱÏßDSΪzÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ£¬Çó½âÆ½ÃæµÄ·¨ÏòÁ¿£¬ÃæABCDµÄ·¨ÏòÁ¿£¬ÀûÓöþÃæ½ÇM-PQ-BΪ60¡ã£¬Çó³ö¦Ë¼´¿É£®

½â´ð ½â£º£¨¢ñ£©Èçͼ£¬QÊÇABµÄÖе㣨ÈôNP£®PQδ×÷³ÉÐéÏߣ¬¿ÛÁ½·Ö£©¡­£¨4·Ö£©

£¨¢ò£©ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬ÉèAB=2AD=4£¬¡ÏDCB=60¡ã£¬ËùÒÔÓÉÓàÏÒ¶¨ÀíÇóµÃ$BD=2\sqrt{3}$£¬ÓÐAB2=AD2+BD2£¬ËùÒÔAD¡ÍBD£¬¡­£®£¨5·Ö£©
ÒÔDΪԭµã£¬Ö±ÏßDAΪxÖᣬֱÏßDBΪyÖᣬֱÏßDSΪzÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ£¬
ÇÒ$A£¨{2£¬0£¬0}£©£¬B£¨{0£¬2\sqrt{3}£¬0}£©£¬S£¨{0£¬0£¬2}£©£¬M£¨{0£¬\sqrt{3}£¬1}£©$£¬

ÓÖ$\overrightarrow{AQ}=¦Ë\overrightarrow{AB}$£¬ÉèQ£¨x£¬y£¬z£©£¬Ôò$£¨{x-2£¬y£¬z}£©=¦Ë£¨{-2£¬2\sqrt{3}£¬0}£©$
¼´$Q£¨{2-2¦Ë£¬2\sqrt{3}¦Ë£¬0}£©$¡­£¨7·Ö£©
ÉèÆ½ÃæµÄ·¨ÏòÁ¿Îª$\overrightarrow n=£¨{x£¬y£¬z}£©$
ÓÉ$\left\{{\begin{array}{l}{\overrightarrow n•\overrightarrow{AD}=0}\\{\overrightarrow n•\overrightarrow{MQ}=0}\end{array}}\right.$µÃ$\overrightarrow n=£¨{0£¬1£¬\sqrt{3}£¨{2¦Ë-1}£©}£©$£¬¡­£¨9·Ö£©
Ò×ÖªÃæABCDµÄ·¨ÏòÁ¿Îª$\overrightarrow m=£¨{0£¬0£¬1}£©$
Ҫʹ¶þÃæ½ÇM-PQ-BΪ60¡ã£¬ÔòÓÐ$cos{60¡ã}=\frac{1}{2}=\frac{{|{\overrightarrow m\overrightarrow{•n}}|}}{{|{\overrightarrow m}||{\overrightarrow n}|}}=\frac{{|{\sqrt{3}£¨{2¦Ë-1}£©}|}}{{\sqrt{1+3{{£¨{2¦Ë-1}£©}^2}}}}$½âµÃ$¦Ë=\frac{1}{3}»ò¦Ë=\frac{2}{3}$¡­£®£¨11·Ö£©
ÓÉͼ¿ÉÖª£¬ÒªÊ¹¶þÃæ½ÇM-PQ-BΪ60¡ã£¬Ôò$¦Ë=\frac{1}{3}$¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÆ½ÃæÓëÆ½ÃæÆ½ÐеÄÅжϣ¬¶þÃæ½ÇµÄÆ½Ãæ½ÇµÄÇó·¨ÓëÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦ÒÔ¼°×ª»¯Ë¼Ï룮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Éè¸÷ÏîΪÕýµÄÊýÁÐ{an}Âú×ãa1=2017£¬log2an=1+log2an+1£¨n¡ÊN+£©£¬¼ÇAn=a1a2¡­an£¬ÔòAnµÄÖµ×î´óʱ£¬n=£¨¡¡¡¡£©
A£®10B£®11C£®12D£®13

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èô¸´Êýz1£¬z2ÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµã¹ØÓÚxÖá¶Ô³Æ£¬ÇÒz1=1+2i£¬Ôò$\frac{z_1}{z_2}$=£¨¡¡¡¡£©
A£®$-\frac{4}{5}+\frac{3}{5}i$B£®$-\frac{3}{5}+\frac{4}{5}i$C£®$-\frac{1}{2}+\frac{3}{2}i$D£®$-\frac{1}{2}-\frac{3}{2}i$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®º¯Êýf£¨x£©=sin£¨2x+¦Õ£©£¨|¦Õ|£¼$\frac{¦Ð}{2}$£©µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»ºó¹ØÓÚyÖá¶Ô³Æ£¬Ôòf£¨x£©ÔÚ[0£¬$\frac{¦Ð}{2}$]Éϵĵ¥µ÷µÝÔöÇø¼äΪ[$\frac{5¦Ð}{12}$£¬$\frac{¦Ð}{2}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ1£¬±ß³¤Îª4µÄÕý·½ÐÎABCDÖУ¬µãE£¬F·Ö±ðÊDZßAB£¬BCµÄÖе㣬½«¡÷AED£¬¡÷DCF·Ö±ðÑØDE£¬DFÕÛÆð£¬Ê¹A£¬CÁ½µãÖØºÏÓÚµãPÈçͼ2£®
£¨¢ñ£©ÇóÖ¤£ºDP¡ÍEF£»
£¨¢ò£©ÇóËÄÀâ×¶P-BFDEµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªÏòÁ¿$\overrightarrow a£¬\overrightarrow b$µÄ¼Ð½ÇΪ$\frac{5¦Ð}{6}£¬|{\overrightarrow a}|=2£¬|{\overrightarrow b}|=\sqrt{3}$£¬Ôò$\overrightarrow a•£¨{2\overrightarrow b-\overrightarrow a}£©$=-10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®¡÷ABCÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðÊÇa£¬b£¬c£¬Ôò¡°acosA=bcosB¡±ÊÇ¡°A=B¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³ä·Ö±ØÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÔÚ¶àÃæÌåABCDEFÖУ¬Æ½ÃæBDEF¡ÍÆ½ÃæABCD£¬ËıßÐÎABCDÊÇÁâÐΣ¬ËıßÐÎBDEFÊǾØÐΣ¬BD=2BF£¬HÊÇCFµÄÖе㣮
£¨1£©ÇóÖ¤£ºAF¡ÎÆ½ÃæBDH£»
£¨2£©ÇóÖ¤£ºÆ½ÃæACE¡ÍÆ½ÃæACF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÉèiΪÐéÊýµ¥Î»£¬Ôò¸´Êý$z=\frac{1-i}{1+i}$µÄģΪ£¨¡¡¡¡£©
A£®1B£®$\sqrt{2}$C£®$\sqrt{3}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸