分析 求出正四面体的底面面积以及高,即可求解正四面体的体积.
解答 解:当棱长为2时,
正四面体的底面积S=$\frac{\sqrt{3}}{4}×{2}^{2}$=$\sqrt{3}$.
正四面体的高h=$\frac{\sqrt{6}}{3}×2$=$\frac{2\sqrt{6}}{3}$.
故正四面体的体积V=$\frac{1}{3}$•S•h=$\frac{1}{3}•\sqrt{3}•\frac{2\sqrt{6}}{3}$=$\frac{2\sqrt{2}}{3}$.
故答案为:$\frac{2\sqrt{2}}{3}$.
点评 本题考查几何体的体积的求法,求解正四面体的高是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com