精英家教网 > 高中数学 > 题目详情
4.若以直角坐标系xOy的O为极点,Ox为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程是ρ=$\frac{6cosθ}{si{n}^{2}θ}$.
(1)将曲线C的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;
(2)若直线l的参数方程为$\left\{\begin{array}{l}x=\frac{3}{2}+\frac{t}{2}\\ y=\frac{{\sqrt{3}t}}{2}\end{array}\right.$(t为参数),当直线l与曲线C相交于A,B两点,求|AB|.

分析 (1)将极坐标方程两边同乘ρ,去分母即可得到直角坐标方程;
(2)利用直线l参数方程的标准形式,代入曲线C的普通方程,根据参数的几何意义得出|AB|.

解答 解:(1)∵ρ=$\frac{6cosθ}{si{n}^{2}θ}$,∴ρ2sin2θ=6ρcosθ,
∴曲线C的直角坐标方程为y2=6x.曲线为以($\frac{3}{2}$,0)为焦点,开口向右的抛物线.
(2)直线l的参数方程为$\left\{\begin{array}{l}x=\frac{3}{2}+\frac{t}{2}\\ y=\frac{{\sqrt{3}t}}{2}\end{array}\right.$,代入y2=6x得t2-4t-12=0.
解得t1=-2,t2=6.
∴|AB|=|t1-t2|=8.

点评 本题考查了极坐标方程与直角坐标方程的转化,直线参数方程的几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若sinα+cosβ=$\frac{\sqrt{3}}{2}$,cosα+sinβ=$\sqrt{2}$,则sin(α-β)=(  )
A.$\frac{5}{11}$B.-$\frac{5}{4}$C.-$\frac{5}{11}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M、N分别是CC1、BC的中点,点P在直线A1B1上,且满足$\overrightarrow{{A}_{1}P}$=λ$\overrightarrow{{A}_{1}{B}_{1}}$(λ∈R).
(1)求异面直线PN,AM所成的角;
(2)若平面PMN与平面ABC所成的角为45°,试确定点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,边AC=1,AB=2,角A=$\frac{2}{3}π$,过A作AP⊥BC于P,且$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则λμ=(  )
A.$\frac{10}{49}$B.$\frac{12}{49}$C.$\frac{6}{25}$D.$\frac{4}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在等差数列{an}中,a2=2,a4+a6=10.
(1)求数列{an}的通项公式;
(2)设bn=an•2an,Tn是数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在底面半径为3高为4+2$\sqrt{3}$的圆柱形有盖容器内,放入一个半径为3的大球后,再放入与球面,圆柱侧面及上底面均相切的小球,则放入小球的个数最多为6个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.2,4,4,6,6,6,8,8,8,8这10个数的标准差为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知tan(α+β)=$\frac{2}{3}$,tan(β-$\frac{π}{4}$)=$\frac{1}{2}$,则tan(α+$\frac{π}{4}$)=(  )
A.$\frac{1}{8}$B.$\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式$\frac{x+1}{x-3}$≥0的解集是(  )
A.(-∞,-1]∪(3,+∞)B.[-1,3)C.(-∞,-1]∪[3,+∞)D.[-1,3]

查看答案和解析>>

同步练习册答案