精英家教网 > 高中数学 > 题目详情
12.函数f(x)=x3+x-3的一个零点所在的区间为(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,1)C.(1,$\frac{3}{2}$)D.($\frac{3}{2}$,2)

分析 根据函数的解析式求函数的值,再根据判断函数的零点的判定定理,求得函数零点所在的区间.

解答 解:由函数的解析式得f(1)=-1<0,f($\frac{3}{2}$)=$\frac{15}{8}$>0,∴f(1)f($\frac{3}{2}$)<0,
根据函数零点的判定定理可得函数零点所在的区间为(1,$\frac{3}{2}$),
故选:C.

点评 本题主要考查函数的零点的判定定理的应用,根据函数的解析式求函数的值,判断函数的零点所在的区间的方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点为F1(-c,0),F2(c,0),P在左支上,若$\frac{{{{|{P{F_2}}|}^2}}}{{|{P{F_1}}|}}$的最小值为8a,求离心率的取值范围(1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.曲线f(x)=$\frac{x}{x+2}$在点(-1,-1)处的切线方程为(  )
A.2x+y+2=0B.2x+y+3=0C.2x-y-1=0D.2x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=x2-2tlnx,t>0
(Ⅰ)若t=1,求曲线f(x)在x=1处的切线方程
(Ⅱ)当t>e时,试判断函数f(x)在区间(1,e)内的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,若输入n的值为3,则输出S的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|-1<x<2},B={0,1,2}.
(1)求A∩B,A∪B;
(2)设函数f(x)=log3(x-1)的定义域维护C,求(∁RC)∩A;
(3)设集合M={x|a<x≤a+2},且M⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\frac{a}{2}$x2+blnx的图象在点(1,f(1))处的切线方程是2x-y-1=0,则ab等于(  )
A.2B.1C.0D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合M={x|x2-3x≤10},N={x|x2-(3a+2)x+2a2+3a+1<0}.若M∪N=M,则实数a的取值范围是[-$\frac{3}{2}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=ex-2x+a,若关于x的方程f(x)=0有两个不同正根,则实数a的取值范围是(-1,2ln2-2).

查看答案和解析>>

同步练习册答案