已知函数(为实数,),,⑴若,且函数的值域为,求的表达式;
⑵设,且函数为偶函数,求证:.
科目:高中数学 来源: 题型:填空题
已知定义在上的偶函数满足:且在区间上
单调递增,那么,下列关于此函数性质的表述:
①函数的图象关于直线对称; ②函数是周期函数;
③当时,; ④函数的图象上横坐标为偶数的点都是函数的极小值点。 其中正确表述的番号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
经英国相关机构判断,MH370在南印度洋海域消失.中国两舰艇随即在边长为100海里的某正方形ABCD(如图)海域内展开搜索.两艘搜救船在A处同时出发,沿直线AP、AQ向前联合搜索,且(其中点P、Q分别在边BC、CD上),搜索区域为平面四边形APCQ围成的海平面.设,搜索区域的面积为.
(1)试建立与的关系式,并指出的取值范围;
(2)求的最大值,并求此时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某种商品,现在定价p元,每月卖出n件,设定价上涨x成,每月卖出数量减少y成,每月售货总金额变成现在的z倍.
(1)用x和y表示z;
(2)设x与y满足y=kx(0<k<1),利用k表示当每月售货总金额最大时x的值;
(3)若y=x,求使每月售货总金额有所增加的x值的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,n台机器人M1,M2,……,Mn位于一条直线上,检测台M在线段M1 Mn上,n台机器人需把各自生产的零件送交M处进行检测,送检程序设定:当Mi把零件送达M处时,Mi+1即刻自动出发送检(i=1,2,……,n-1)已知Mi的送检速度为V(V>0), 且记,n台机器人送检时间总和为f(x).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.
(1) 判断函数是否为 “()型函数”,并说明理由;
(2) 若函数是“()型函数”,求出满足条件的一组实数对;
(3)已知函数是“型函数”,对应的实数对为,当时,,若当时,都有,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定义域为的函数同时满足以下三个条件:
①对任意的,总有;
②;
③当,且时,成立.
称这样的函数为“友谊函数”.
请解答下列各题:
(1)已知为“友谊函数”,求的值;
(2)函数在区间上是否为“友谊函数”?请给出理由;
(3)已知为“友谊函数”,假定存在,使得,且,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com