精英家教网 > 高中数学 > 题目详情
15.(1)若函数f(x)=4x3-ax+3的单调递减区间是[-$\frac{1}{2}$,$\frac{1}{2}$],则实数a的值是多少?
(2)若函数f(x)=4x3-ax+3在[-$\frac{1}{2}$,$\frac{1}{2}$]上是单调函数,则实数a的取值范围为多少?

分析 (1)求出导函数,令导函数小于0的解集为单调递减区间;得到-$\frac{1}{2}$,$\frac{1}{2}$是导函数的两个零点,代入求出a;
(2)求出函数的导函数,函数f(x)=4x3-ax+3在[-$\frac{1}{2}$,$\frac{1}{2}$]上是单调函数,所以f′(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]符号不变,分离变量后利用函数的单调性求实数a的范围.

解答 解:(1)f′(x)=12x2-a,
∵f(x)=4x3-ax+3的单调递减区间是[-$\frac{1}{2}$,$\frac{1}{2}$],
∴-$\frac{1}{2}$,$\frac{1}{2}$是12x2-a=0的两个根,
所以a=3;
(2)由f(x)=4x3-ax+3,所以f′(x)=12x2-a,
因为函数f(x)=4x3-ax+3在[-$\frac{1}{2}$,$\frac{1}{2}$]上是单调函数,
所以以f′(x)=12x2-a在[-$\frac{1}{2}$,$\frac{1}{2}$]上符号不变,
可得-a≥0或12×($\frac{1}{2}$)2-a≤0恒成立,
解得a≤0或a≥3.

点评 本题考查了函数的单调性与函数的导函数的关系,二次函数的简单性质的应用,考查了利用函数的单调性求函数的最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知数列{an}的前n项和Sn=kn-1(k∈R),且{an}既不是等差数列,也不是等比数列,则k的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U={-2,0,1,2},集合A={x|x2+x-2=0},则∁UA=(  )
A.{-2,1}B.{-2,0}C.{0,2}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,且2an=Sn-n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}-1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.交换积分次序∫${\;}_{1}^{3}$dx∫${\;}_{1}^{x}$f(x,y)dy=${∫}_{1}^{3}d{y∫}_{y}^{3}f(x,y)dx$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}的通项为an=2n+3n,则其前n项和Sn=n2+n+$\frac{3}{2}$(3n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在直角梯形ABCD中,AB∥CD,AD⊥AB,AB=4,AD=2,CD=t,P是线段CD上的动点,若$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值为0,则t的取值范围是t≥2,且t≠4,.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a=(1,λ)$,$\overrightarrow b=(2,1)$,$\overrightarrow c=(1,-2)$,若向量$2\overrightarrow a+\overrightarrow b$与$\overrightarrow c$共线,则λ的值为(  )
A.$\frac{1}{2}$B.$\frac{9}{2}$C.2D.$-\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a=($\frac{1}{3}$)${\;}^{\frac{2}{5}}$,b=($\frac{2}{3}$)${\;}^{\frac{2}{5}}$,c=log${\;}_{\frac{1}{3}}$$\frac{1}{5}$,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.a>c>bD.c>b>a

查看答案和解析>>

同步练习册答案