精英家教网 > 高中数学 > 题目详情
7.已知点F(c,0),A分别为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点和上顶点,点B为直线l:x=$\frac{{a}^{2}}{c}$上一动点,且△ABF的外接圆面积最小值为4π,则当椭圆的短轴最长时,椭圆的离心率为$\frac{\sqrt{2}}{2}$.

分析 由题意作出图象,当AB⊥l时,可判断r=$\frac{AB}{2}$,且此时AB的长度最短;再由两点之间,线段最短可知AB=$\frac{{a}^{2}}{c}$=4,从而再由b2=a2-c2=4c-c2=-(c-2)2+4;从而求c与b,再求椭圆的离心率即可.

解答 解:如右图,O为△ABF的外接圆的圆心;
由题意知,A(0,b),F(c,0);
当AB⊥l时,B($\frac{{a}^{2}}{c}$,b);
则$\overrightarrow{AF}$=(c,-b),$\overrightarrow{BF}$=(c-$\frac{{a}^{2}}{c}$,-b);
$\overrightarrow{AF}$•$\overrightarrow{BF}$=c(c-$\frac{{a}^{2}}{c}$)+b2=c2+b2-a2=0,
故$\overrightarrow{AF}$⊥$\overrightarrow{BF}$;
此时,r=$\frac{AB}{2}$,且此时AB的长度最短;
当AB与l不垂直时,2r>AB;
则r>$\frac{AB}{2}$;
当AB⊥l时,△ABF的外接圆的半径最小;
又∵△ABF的外接圆面积最小值为4π,
∴当AB⊥l时,AB=4;
即$\frac{{a}^{2}}{c}$=4,即a2=4c;
b2=a2-c2=4c-c2=-(c-2)2+4;
故当c=2时,b有最大值2;
此时a=2$\sqrt{2}$;
故椭圆的离心率为$\frac{2}{2\sqrt{2}}$=$\frac{\sqrt{2}}{2}$;
故答案为:$\frac{\sqrt{2}}{2}$.

点评 本题考查了椭圆的性质应用及椭圆中的最值问题的应用,同时考查了利用平面向量判断位置关系的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.适合(1-$\frac{10}{100}$)n<$\frac{1}{2}$的最小正整数n的值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某四面体的三视图如图所示,该四面体的体积是8,该四面体四个面的面积中最大的是10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一个盒子里装有编号为1,2,3,4,5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号.
(1)求第一次或第二次取到3号球的概率;
(2)设ξ为两次取球时取到相同编号的小球的个数,求ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图1,△ABC,AB=AC=4,$∠BAC=\frac{2π}{3}$,D为BC的中点,DE⊥AC,沿DE将△CDE折起至△C′DE,如图2,且C'在面ABDE上的投影恰好是E,连接C′B,M是C′B上的点,且$C'M=\frac{1}{2}MB$.
(1)求证:AM∥面C′DE;
(2)求三棱锥C′-AMD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上的一点P(x0,y0)到左焦点的距离与到右焦点的距离之差为2$\sqrt{2}$,且到两条渐进线的距离之积为$\frac{2}{3}$,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{6}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在等差数列{an}中.an=m,an+m=0,则am=n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,多面体ABCDE中,CD⊥平面ABC,BE⊥平面ABC,AB=BC,BE=$\frac{1}{2}$CD,
点M为AD中点.
(Ⅰ)求证:EM∥平面ABC;
(Ⅱ)求证:EM⊥平面ACD;
(Ⅲ)设P为线段BC上一点,且CP=2PB,试在线段AE上确定一点Q,使得
     PQ∥平面ACD,并求出$\frac{EQ}{AE}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.正弦曲线y=sinx在点($\frac{π}{3}$,$\frac{\sqrt{3}}{2}$)的切线方程是(  )
A.x+2y-$\sqrt{3}$+$\frac{π}{3}$=0B.x-2y+$\sqrt{3}$-$\frac{π}{3}$=0C.$\sqrt{3}$x-2y+$\sqrt{3}$-$\frac{\sqrt{3}}{3}$π=0D.$\sqrt{3}$x+2y-$\sqrt{3}$+$\frac{\sqrt{3}}{3}$π=0

查看答案和解析>>

同步练习册答案